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Modeling and Predicting Chaotic Circuit Data∗

Wanting Xu† , Michael L. Stein† , and Ian Wisher‡

Abstract. Analyzing chaotic observations generated from some unknown nonlinear dynamics presents signifi-
cant challenges for modeling the process and predicting future evolutions. We consider time series
data measured from an electrical circuit that exhibits chaotic behavior. We compare and contrast
the performance of Gaussian process (GP) and neural network (NN) models in short-term prediction
and capturing the long-term dynamics. Major difficulties in modeling observations generated by such
a physical process include distinguishing and characterizing the model and observational errors. We
explore the effects of different types of model and observational errors on the likelihood function of
the initial state using data generated under our fitted NN model. Our results show the distinctive
effects of model and observational errors on inferring the initial state. In the absence of model
error, we obtain exponentially growing information about the initial state for more observations
even under temporally correlated observational errors. However, even with a tiny model error much
smaller than what is measured physically and otherwise correct dynamics, the likelihood method no
longer identifies the true initial state and hence cannot track the system for an indefinitely long time.
Nonetheless, for this circuit system, our fitted predictors based on the GP and NN models appear
to be promising in capturing the long-term dynamics in the presence of stochastic thermal noise.
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1. Introduction. The study of nonlinear dynamics and chaos has traditionally focused on
developing and investigating mathematical invariants that describe and classify the asymp-
totic behavior of the iterates [26, 28]. This leads to important invariants such as the Lya-
punov exponent and fractal dimension with which knowledge about the future evolution of
the dynamical system can be learned, once its mathematical description is known. However,
challenges still remain to analyze observations generated by a dynamical system whose math-
ematical formulation is at least partially unknown. These challenges include, but are not
limited to, calculating geometric and dynamical invariants of an underlying strange attractor
[13, 41, 50], modeling the deterministic portion of the dynamical evolution from the obser-
vations [17, 32], and constructing a predictive model directly from the observations [15, 22].
A comprehensive discussion of the problems arising from analyzing real observations from a
chaotic system can be found in [1] and [2]. In this work, we focus on modeling the observed
dynamical system and predicting its future evolution. The modeling and prediction task is
made difficult in particular by the characterization of possible stochastic model error of the
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underlying dynamics, observational error during measurement, and the separation of the two.
The goal of this work is to provide some insights into modeling the dynamics and character-
izing different types of errors for observations measured from some chaotic physical systems.
We investigate these issues in the context of a chaotic circuit system and combine both real
data analysis and simulation studies based on models fitted to the real data.

Actual observations from physical systems are typically measurements of a few observ-
ables, while the underlying state space of the system can be higher-dimensional. One common
method used to reconstruct the state space from the observations st is time-delay embedding,
which uses the time-lagged observation vectors (snτ , s(n+1)τ , . . . , s(n+m−1)τ ) for some embed-
ding dimension m, time lag τ , and n ≥ 1 to form coordinates of the reconstructed state space
[2, 15]. This method is, to some extent, supported by the Takens embedding theorem [48],
which indicates that the information about the underlying state space is preserved by the
time-lagged observation vectors for certain embedding dimensions. With the time-delay em-
bedding and the reconstructed state space, the modeling and prediction of observed chaotic
data have revolved around local techniques, global techniques, and the combination of the
two [2]. A common local prediction technique discussed in various instances [15, 17, 22] is to
construct the k-step ahead predictor at a time point in the form of a polynomial in m variables
for some embedding dimension m. The parameters of the polynomial are fitted using the near
neighbors of the m-dimensional time-lagged observation vector and their corresponding k-step
ahead observations. For example, the simplest nonlinear method of local forecasting proposed
by [36] is to find the nearest neighbor st to the current observation sn, and use the value st+1 as
the prediction for sn+1. This prediction-by-analogue method is essentially fitting a constant—
a zeroth order polynomial. One improvement to this simple analogue method is to use more
than one near neighbor and predict by taking the average [42] or distance-weighted average
[47] of their outputs. Some studies [30] have also investigated selecting the hyperparameters
of this method such as the number of near neighbors optimally. Further improvements can be
made by fitting a first order polynomial using the near neighbors [15, 38], and [22] investigates
higher order polynomials. The use of higher order polynomials increases the model complex-
ity and is expected to produce better predictions. However, since the number of parameters
increases exponentially in the order of the polynomial, more computational efforts are also
encountered. In addition, the local models are discontinuous, which is undesirable if the goal
is to obtain a description of the underlying continuous dynamics.

Global models, on the other hand, describe the whole set of observations by representing
the model mapping as an expansion in some basis functions, e.g., as a polynomial or ratio of
polynomials, and fitting the parameters using the entire data set [2, 9, 15]. The method is also
subject to computational difficulties when the model is of high complexity. Modeling using
radial basis functions [44] is an example of combining features from both the local and global
techniques. The model is constructed and interpreted globally but also maintains good local
properties through the locally centered radial basis functions [15]. In our work, we construct
global models trained for one-step ahead prediction using Gaussian process (GP) and neural
network (NN) models. GP provides a statistical basis for interpolation, model diagnostic, and
uncertainty calibration, while NN has proven effective in modeling some chaotic time series
data [6, 19, 23, 27, 51].

There has been a wide range of studies on using GP and NN to model and predict dynam-
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ical systems arising in various areas [12, 14, 21, 24, 53]. Particularly for chaotic time series
prediction, [6, 18, 43] have considered feed-forward NNs. Recurrent and nonlinear autoregres-
sive with exogenous input (NARX) NNs have been utilized in [4, 5, 19, 37, 54]. However, the
application areas of the aforementioned studies have mainly concentrated on classical chaotic
systems such as the logistic map, the Lorenz system, and Mackey–Glass equations. Although
studying the performance of modeling and prediction methods using the standard systems
is insightful, we highlight the importance of investigating observations measured from real
nonlinear and chaotic dynamical systems, which, in addition to the unknown dynamics, al-
most always also contain nonnegligible but unknown systematic and observational noise. The
existence of these uncertainties associated with real systems complicates modeling and state
estimation, as we will show later in this paper. Some works have been applied to benchmark
nonlinear time series data sets, e.g., the sunspot series [4, 37]. For data such as the sunspot
series, the focus is often on short-term prediction [4], perhaps because accurate long-term
prediction is not feasible for such a complex system given the limited data. In contrast, this
work explores real observations from a chaotic dynamical system whose state vector under a
nominal model is fully and accurately observed at each time step, thus at least raising the
possibility of accurate long-term prediction and identification of the initial state of the system
from the observations. Specifically, our goal is to understand the performance and limitations
of applying commonly used modeling techniques such as GPs and NNs to these data.

We consider analyzing and modeling voltage measurement data generated by a laboratory-
built electrical circuit [38]. The observations are relatively smooth, concentrate on a low-
dimensional attractor, and exhibit sensitive dependence on the initial condition. A nominal
differential equations model, based on a simplistic description of the circuit components, has
systematic deficiencies when fitted to the data. A more sophisticated attempt to build a
physical model for the data using the circuit simulator SPICE [20, 40] did not fix these
problems. We hence focus on modeling and prediction using GP and NN models. For both
methods, we train a one-step ahead predictor based on the input-output pairs of m preceding
observations and the current one for some embedding length m > 0. To investigate the
capacities of the predictors in capturing the dynamics, we investigate the tradeoff between
one-step prediction and long-term tracking. We find that both models perform similarly in
one-step prediction, and the prediction error decreases as m increases. In contrast, the ability
of the model propagations to track the observations improves at first but then degrades as
m becomes larger for both models, which suggests a moderate value of m produces better
balance between one-step prediction and long-term tracking.

One of our goals for analyzing observations generated from some unknown dynamics is
to investigate the effects and characterizations of the model and observational errors. We
consider this aspect by performing simulations with data generated by our fitted models. The
fitted models capture the chaotic character of the observations, and the simulated data is
qualitatively similar to the observations. We explore the effects of model and observational
errors on the likelihood function and the identifiability of the initial state. We find that with
independent and identically distributed (i.i.d.) observational error and no model error, the
likelihood ratio between the true initial state and neighboring points increases exponentially
in the number of observations. However, with even a tiny stochastic model error but otherwise
correct dynamics, the true initial state no longer maximizes the likelihood function, and there
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does not seem to be an initial state able to track the observations for an indefinitely long time.
A temporally correlated observational error with no model error, on the other hand, preserves
the identifiability of the true initial state as the maximizer of the likelihood function. The
information provided by the likelihood about the true initial state also grows exponentially
with more observations but at a lower rate than that for the i.i.d. observational error. To
connect with our circuit system, we also perform simulations with a model error mimicking
the thermal noise estimated from a reconstructed physical circuit and show the previously
fitted GP and NN models seem to provide an accurate description of the long-term dynamics.

The rest of the paper is organized as follows. In section 2, we introduce the data set,
investigate the deficiencies of the nominal model in capturing the dynamics present in the
data, and discuss the ultimately unsuccessful efforts to model the system using the circuit
simulator SPICE [20, 40]. In section 3, we compare the prediction performances of GP and
NN models and investigate their capacities in describing the long-term dynamics. Section
4 considers the effects of model and observational errors using simulation data qualitatively
similar to the observations and compares the fitted models in section 3 with simulations under
model errors estimated from a reconstructed physical circuit.

2. The circuit data. In this work, we consider a time series consisting of voltage measure-
ments of a laboratory-built electrical circuit [38]. The circuit was built on a breadboard using
capacitors, resistors, operational amplifiers, and multipliers. A diagram of the circuit is shown
in Figure 1, where V1, V2, and V3 are the nodes at which voltages are measured. In the rest of
the section, we refer to the three voltages measurements V1, V2, and V3 as coordinates x, y, and
z, so that the observation at time step n is sn = (xn, yn, zn). The circuit was allowed to run
for several minutes before data collection, and the measurements were taken at a frequency of
10kHz for about 1.5 minutes, resulting in three time series each with length 1 million. There
were nine sets of measurements taken under different conditions in [38, Chapter 2], and the
data we consider here belong to “set7.” Figure 2 shows the observations for the initial 100,000
time points, and Figure 3 shows the trajectories of the initial 1000 observations. The data
points loop around and fall densely on a two-dimensional manifold, as shown in Figure 2.
Moreover, Figure 3 shows the observed trajectory is fairly smooth, indicating relatively low
observational noise. Figure 4 shows the difference in Euclidean norm at each subsequent time
point between two trajectories that start close by. Specifically, we select from all time points
t, other than the initial one, the t∗ that minimizes ‖s0 − st‖, and we consider the differences
‖sn−st∗+n‖ for n = 0, 1, . . . , 500. The exponentially growing divergence of the two trajectories
suggests the observations exhibit sensitive dependence on the initial conditions.

Because of the simple structure of the circuit, applying Kirchhoff’s law to the idealized
behavior of the circuit components yields the following nominal model:

dx

dt
= a1y,

dy

dt
= −a2y + a3x− a4(x+ z)− a5xz2,

dz

dt
= a6x.

(1)

This set of ODEs (1) is isomorphic to the Moore–Spiegel system [39], which is a nonlinear
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Figure 1. Circuit diagram [38, Figure 2.5]. V1, V2,
and V3 indicate the nodes at which voltages are mea-
sured.

Figure 2. The initial 100,000 observations. x,
y, and z correspond to the voltage measurements V1,
V2, and V3 accordingly. The observations in the 3D
space fall on a two-dimensional attractor.

Figure 3. Trajectories of the initial 1000 obser-
vations.

Figure 4. The trajectory differences ‖sn−st∗+n‖
for n = 0, 1, . . . , 500. st∗ is the closest observation
to the initial observation s0.

thermodynamical oscillator that has its physical origin in fluid dynamics. It models the
displacement z(t) of a small mass element attached at a fixed point to an elastic spring
oscillating in a temperature stratified fluid. The element exchanges heat with the ambient
fluid and its buoyancy depends on the temperature. The Moore–Spiegel system, like the
Lorenz attractor, is one of the classical low order dynamical systems that exhibit chaotic
behavior for certain choices of the parameter values [7, 39].

Since our data is measured from a real circuit, obtaining an accurate physical representa-
tion of the underlying dynamics would be helpful to model the system and the error terms.
Therefore, the nominal model derived from the theoretical description of the circuit serves as
our first choice of the system dynamics. However, [38] points out that significant discrepancies
exist between the observations and the nominal model (1). For example, with the parame-
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Figure 5. The difference between observations
and one-step ahead predictions at the initial 100
time points with the fitted nominal model (1).

Figure 6. The observations (dot) and the pre-
dictions (asterisk) for the initial 100 time points
projected to the x-z plane, with the fitted nominal
model (1).

ter values used in the circuit, (1) settles down to a periodic orbit, whereas the observations
manifest chaotic behavior. To investigate the deficiency of the nominal model, we estimate
the parameters of (1) by minimizing the sum of squared one-step ahead prediction errors of
the initial 2000 observations. Figure 5 shows the prediction errors of the fitted model (1)
for the initial 100 time points. The trajectories for the prediction errors are fairly smooth
and systematic, suggesting possible dynamics not captured by model (1). Figure 6 shows the
observations and predictions projected to the x-z plane. Systematic departures of predictions
from observations are also noticeable. For example, on the lower left portion of the plane
where x < 0 and z < 0, the predictions tend to be ahead of the observations, while on the
lower right portion where x > 0 and z < 0, the predictions tend to lag behind the observa-
tions. The systematic patterns in the prediction errors suggest the inadequacy of model (1)
in describing the dynamics present in the observations.

In reality, the circuit components do not behave as simply as the nominal model (1)
suggests. For example, the nominal model does not take into consideration any parasitic
elements of the circuit, which are unavoidable and include stray inductance, capacitance, and
resistance [3, 29]. These parasitics can alter the behavior of the circuit depending on the
frequency of the signal, which in turn depends on the circuit components through (1). This
intricate interaction is not captured by the nominal model, which assumes constant values for
the circuit components at all frequencies. In addition, (1) models the behavior of the circuit
on a macro level, but does not take into account effects on a micro level such as thermal
noise, which is stochastic in nature. Therefore, our next attempt to obtain a more realistic
physical description of the system by taking into account the complex behaviors of the circuit
components is to use the circuit simulator SPICE [20, 40].

SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose elec-
trical circuit simulator used in circuit design to verify the circuit operation at transistor level
and predict the behavior of the designed circuit [40]. It enables designers to simulate the circuit
even before prototyping. We use LTspice [20], a version of the SPICE simulator developed by
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Linear Technology Corporation, to simulate the circuit in [38] in an attempt to obtain a good
representation of the underlying dynamics. However, we were not able to obtain simulation
results close to the observations. In particular, for all SPICE simulations with various initial
values and component values the same as or slightly perturbed from their nominal values in
[38], the resulting attractors in some cases do not qualitatively resemble that in Figure 2 and
the simulations always have systematically much larger output ranges for the three voltages
than the observations.

The main obstacle in carrying out a SPICE simulation of the circuit used in [38] is finding
accurate component models and correctly estimating the parasitics involved. Unfortunately,
no SPICE model for the original multiplier is available, so a drop-in replacement must be used
as a substitute. The models for the amplifiers and multipliers also have unrealistic internal
parasitic parameters that lead to numerical instabilities in the simulation. To account for
these issues, simulations were run with different parasitic inductances and capacitors added to
attempt to recover the original measurements. However, though some simulations qualitatively
displayed the expected chaotic behavior of the system, the results were numerically unstable
and unable to reliably match the measured data.

Given the ultimately unsuccessful efforts to obtain a physically inspired dynamics, in
the next section, we will explore alternative data-driven models for the same one-step ahead
prediction problem and investigate their capacities in capturing the long-term dynamics.

3. Gaussian process and neural network models. In this section, we consider a Gauss-
ian process (GP) and a neural network (NN) model for prediction based on m previous
observations with m ≥ 1. Specifically, denote the observation at time step k as sk =
(sk(1), sk(2), sk(3)), k = 1, . . . , N . For each component ν ∈ {1, 2, 3}, we model the out-
puts sk(ν) as a GP (or NN) with inputs (sk−m, . . . , sk−1) for k = m + 1, . . . , N . Note that
each input is 3m-dimensional. Due to the time series nature of the data, each observation
can serve as either input or output in different training examples. For example, sm+1(ν) is
the target output in the first training example with input (s1, . . . , sm). Moreover, sm+1(ν)
is also part of the input (s2, . . . , sm+1) in the second training example with sm+2(ν) as its
desired output. However, for each training example, the output and input share no common
observations. A similar autoregressive structure is also considered in [4, 14, 53].

3.1. Model details and fitting. For the GP model [45, 46], we consider the following
squared-exponential covariance function:

(2) Cov (f(q), f(r)) = σ2e
−
∑β
i=1

∣∣∣ qi−riθi

∣∣∣2

for some q, r ∈ Rβ and β = 3m. Furthermore, we include a nugget effect γ > 0 so the
covariance matrix is Σ = σ2(R+γI), where the (i, j)th element of R is the correlation between
the ith and jth outputs. Note that the GP with the inputs and outputs specified above is
not an internally consistent model for the observations, in the sense that the observations can
not follow a joint normal distribution since they appear both as the outputs and inputs of the
GP. A similar situation appears in [16], which considers emulation of dynamic computer codes
using GP. We nonetheless use GP as a tool to fit a predictor by estimating parameters through
maximizing the ostensible Gaussian likelihood and making predictions through interpolation.



38 WANTING XU, MICHAEL L. STEIN, AND IAN WISHER

Denote the outputs from all training examples as s = (sm+1(ν), . . . , sN (ν)) and the range
parameters as θ = (θ1, . . . , θ3m); then the log-likelihood function by profiling over the scale
parameter σ2 satisfies

2l(θ, γ) = − log |R(θ) + γI| − n log sT (R(θ) + γI)−1s

− n log (2π) + n log n− n,
(3)

and

σ̂2 =
sT (R(θ) + γI)−1s

n
,

where n = N −m. Then (3) is maximized to obtain maximum likelihood estimates (MLEs)
θ̂ and γ̂. At time step t with input (st−m, . . . , st−1), the prediction of st(ν) is made by the
empirical best linear predictor (EBLP),

ŝt(ν) = ΣT
sst(ν)

(θ̂, γ̂)Σ−1ss (θ̂, γ̂)s,

and is calibrated by the empirical mean squared error (EMSE),

EMSE(ŝt(ν)) = Σst(ν)st(ν)(θ̂, γ̂)− ΣT
sst(ν)

(θ̂, γ̂)Σ−1ss (θ̂, γ̂)Σsst(ν)(θ̂, γ̂).

To address the concern that (3) may possess multiple maximizers, we experimented with
different starting points for θ and γ. Although the final estimates obtained from multiple
starting points differ, the relative differences of the maximized profile log-likelihoods (3) and
the prediction errors are all less than 10−4 and 10−3, respectively. Therefore, we do not see
any evidence that the choice of initial estimates materially affects our results. A second model
we experiment with is a feed-forward NN, a detailed account of which can be found in [25]. We
fit an NN model consisting of one hidden layer with 20 neurons using the same set of inputs
and outputs as those for fitting the GP model. The estimation and prediction are carried
out using MATLAB Neural Network Toolbox 9.1 [10]. Note that for both GP and NN, three
separate models are fitted for predicting the three components of the observation.

3.2. Prediction results. In this subsection, we investigate the one-step prediction and
long-term tracking performances of the GP and NN models discussed in section 3.1. For each
component ν, we fit GP and NN models based on the initial N observations and evaluate the
root mean squared errors (RMSEs) for predicting in-sample and out-of-sample. We consider
two sets of observations when evaluating out-of-sample: one is the next N observations after
the initial N observations used to fit the model, and the other is the N observations at the
tail end of the data set. Since the data are collected in a chronicled order and the properties
of the electrical components may change with environmental conditions such as temperature
as the circuit operates, we expect the tail part of the data set to be the most disparate to the
in-sample data, and hence may provide information about possibly time-varying parameters.

Figure 7 shows the in-sample and the two types of out-of-sample RMSEs for the GP
model fitted with the initial N = 2000 observations. Prediction errors decrease and gradually
stabilize as the embedding length increases. The out-of-sample error evaluated with the tail
part of the data set is only slightly larger than that evaluated with the second N observations,
suggesting little variation of the parameters across time. The results for the NN model are
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Figure 7. RMSEs at each embedding length m
for predicting the initial N observations (in-sample),
the next N observations (out-of-sample), and the tail
N observations (out-of-sample: tail) using the GP
model. N = 2000, m = 1, . . . , 7.

Figure 8. QQ-plot of the out-of-sample stan-
dardized prediction errors for predicting the 3rd com-
ponent when m = 7. Dashed reference line has slope
1 and intercept 0.

only slightly worse; the differences of RMSEs between the two models are on the order of
10−5, which is two orders of magnitude smaller than the prediction error itself. Figures SM1
and SM2 in Supplement SM1 show the RMSEs for the NN model and the comparison between
the two models.

The use of GP provides a statistical basis for a model diagnostic. Under the GP model
assumption for {sk(ν)|k = m + 1, . . . , N}, for ν ∈ {1, 2, 3}, we have that the standardized
prediction errors are normally distributed. In other words, we expect that

ŝk(ν)− sk(ν)√
EMSE(ŝk(ν))

∼ N (0, 1)

under the GP model. Figure 8 shows the QQ-plot of the out-of-sample standardized prediction
errors for predicting the third component (ν = 3) when m = 7. The standardized errors are
generally well approximated by a standard normal distribution except for a small fraction of
outliers.

Note that both the GP and NN models are constructed and fitted for one-step prediction
based on m previous observations, while our aim is to understand the underlying long-term
dynamics based on the observations. As a result, we investigate the capabilities of the previ-
ously developed models in long-term prediction. Specifically, we propagate the fitted models
out-of-sample from multiple starting points and compare the trajectories of the model prop-
agation and observations. One quantitative measure of long-term predictability is hence the
area enclosed by the two trajectories. For ν ∈ {1, 2, 3}, denote the model propagation and

observations from the ith starting point as {p(i)k (ν)}k=1:T and {s(i)k (ν)}k=1:T , respectively, for
a tracking length of T . We define the area A(i)(ν) between the two trajectories as the sum of
the areas of the trapezoids whose vertices are consecutive observation and model propagation
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points, i.e.,

A(i)(ν) =

T−1∑
k=1

[
1

2

(
max(s

(i)
k+1(ν), p

(i)
k+1(ν)) + max(s

(i)
k (ν), p

(i)
k (ν))

)
− 1

2

(
min(s

(i)
k+1(ν), p

(i)
k+1(ν)) + min(s

(i)
k (ν), p

(i)
k (ν))

)]
.

(4)

An illustration of this definition of area is shown in Figure SM3 in Supplement SM1. We
calculate the average area over all components and all starting points defined by

(5) A =
1

3L

L∑
i=1

3∑
ν=1

A(i)(ν)

and use that as a measure of the long-term predictability of a model. The area between two
trajectories, instead of standard pointwise discrepancy metrics such as MSE, is used because
we view a trajectory that is largely correct except for a small phase shift as being an accurate
prediction, which would be reflected in a small value for our metric, whereas MSE could be
quite large for even small phase shifts.

Figure 9 shows the average area between the model propagation and observations over
L = 500 out-of-sample starting points each tracking out a length of T = 2000. We choose the
starting points every 200 steps to make the starting points fairly evenly distributed over the
attractor. For both models, when increasing the embedding length, the long-term predictabil-
ity improves for small m and then deteriorates. This pattern suggests that an embedding
length that is too large (m > 2 for GP and m > 3 for NN) may produce a model well suited
for one-step prediction while performing worse for long-term tracking with our parameter
estimates. Note that smaller one-step prediction error does not necessarily imply better long-
term tracking performance if the model is misspecified, e.g., if the system contains stochastic
model error. So in the following, we focus on the GP and NN models with m = 2 and m = 3,
respectively.

The fact that the embedding length leading to the best performance in both one-step pre-
diction and long-term tracking is larger than one for both GP and NN models is an indication
that the state of the circuit system may not solely consist of the three voltage measurements
at one time point. In fact, the circuit components have different bandwidths, and hence they
respond to signal with different rates. Though the multipliers and amplifiers were selected
for their flat frequency response, in practice there are small variations in the response on
the order of a percent over the bandwidth of the circuit. As a result, a single measurement
frequency will not perfectly capture the response of the components and subsequently the
circuit. In this case, using an embedding length larger than one, i.e., incorporating previous
observations, in the prediction can be seen roughly as a way to at least partially recover the
frequency information, which presumably is also part of the state. The need to include past
states in the prediction could also be due in part to observational errors, and it is difficult to
distinguish between these possibilities.

Another interesting feature of the long-term prediction is the region on the state space
where model propagations tend to lose track of the observations. To measure such a divergence
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Figure 9. Average area A, defined in (5), be-
tween observations and model propagations in 2000
steps for 500 out-of-sample starting points when
m = 1, . . . , 7.

Figure 10. Trajectories for observations and NN
model propagations when m = 3. Starting time point
is 3801. The interval [4057, 4106] surrounded by ver-
tical lines is the first window whose average area over
the three components exceeds 65.

of the model propagation from the observations, we use a moving window of length 50 and
calculate the average area over the three components between the two trajectories inside the
window. An average window area exceeding 65, by empirical experiments, seems to be a good
indicator of a divergence between the model propagations and observations. Figure 10 shows
one example of such a divergence pattern. Note that following the divergence, although the
model propagations sometimes get back on track with the observations briefly, the tracking
becomes noticeably worse. Figures 11 and 12 show, for GP and NN models, the regions
on the state space where a divergence first occurs for the 500 pairs of trajectories. Note
that both models suggest that the divergence largely concentrates in the region with the
most significant nonlinearity, which is approximately {(x, y, z)||z| < 0.5, 0 < x < 1}. This
phenomenon agrees with some existing results in the numerical analysis literature [35, 49, 52]
that report amplification of numerical errors near the saddle points of chaotic attractors.

4. Identifiability of initial state under model and observational errors. In section 3,
GP and NN predictors are constructed based on the observed data, and their performances
in both one-step ahead and long-term predictions are investigated with different embedding
lengths. In this section, we build on the fitted models in section 3 and the insights drawn from
their long-term tracking performances to construct simulation systems that largely capture
the chaotic character of the observed data. With such simulations, our goal is to understand
the implications of applying statistical methods to infer important components of the sys-
tem, particularly the initial state, when the data manifests chaotic behaviors and the system
contains stochastic model and observational errors.

Reference [11] shows that the likelihood function for the initial state of a chaotic logistic
map exhibits complex and irregular behaviors. In this section, we explore, through simulations,
the extent to which similar behaviors of the likelihood functions arise for systems whose
realizations are qualitatively similar to our observations. In addition, we compare the long-
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Figure 11. Blue is a subset of the observations
displayed to represent the attractor; red points show
where the average area in a window of length 50 be-
tween the observations and GP model propagations
with m = 2 first exceeds 65 for the 500 pairs of tra-
jectories.

Figure 12. Same as Figure 11 but using NN
model propagations with m = 3.

term predictability of the fitted GP and NN models in section 3 with simulations generated
with an electronic noise term based on measurements from a reconstructed physical circuit.
We found that the “chaotic likelihoods” shown in [11] for the logistic map, an ideal chaotic
system, also appear for our system, which is constructed based on real chaotic observations.
The fact that this NN approximation to the observed circuit data reproduces the extreme
sensitivity to initial conditions found in simple simulated chaotic dynamical systems is a
noteworthy finding given that the NN used is generic and was not developed to be able to
mimic chaotic dynamics. However, even a tiny stochastic model error in the system changes
the identifiability of the initial state significantly, suggesting that likelihood functions for initial
conditions based on real data will never show the extreme behavior seen in [11]. Due to the
computational difficulties of fitting a GP to a large training set, we focus on NN models in
sections 4.1 and 4.2. However, we comment on the simulation results using a GP model fitted
with a moderate number of observations at the end of section 4.1.

We consider the following state space formulation:

ut+1 = M(ut) + εt, εt
i.i.d.∼ N (0, Q),(6a)

wt = Hut + ηt,(6b)

where (6a) models the evolution of the underlying states ut with a stochastic model error εt,
and (6b) models the noisy observations wt with an observational error ηt. In this section,
we investigate the effects of both i.i.d. and temporally correlated observational errors. Using
a much larger training set here, the initial 400,000 observations, we explored multiple NN
configurations. We found that, for an embedding length m = 3, a feed-forward NN model
with two hidden layers and 10 neurons for each layer gave the smallest prediction errors, in
contrast to the model with one hidden layer used earlier. Thus, we mainly report results
for this two-layer model, although other models give similar results (see the end of section
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4.1). We used a large training set for this exercise because we are interested in obtaining
the best approximation we can to the circuit’s behavior as a basis for further simulations. In
contrast, in section 3, where we used a training set of only 2000 observations, our goal was
to show that it is possible to fit an accurate model with a modest sample size. Furthermore,
in section 3, we wanted to make a fair comparison to the GP approach for which maximizing
(3) for larger sample sizes is computationally difficult. The results in section 3 indicate that
m = 3 appears to perform well in long-term predictions for NN models fitted by minimizing
the one-step prediction errors, and by using a large training set, we expect this model to be
able to capture most of the dynamics in the data. Note that with this larger training set,
we indeed obtain a better fit to the data. For example, the RMSE evaluated using the tail
2000 observations decreases by 8% compared to that of the NN model fitted with only the
initial 2000 observations considered in section 3. Since the NN model predicts based on three
previous observations, in this case, we have an augmented state vector uTt = (ũTt−2, ũ

T
t−1, ũ

T
t ),

a model mapping MN , and an observational mapping HN defined asũt−1ũt
ũt+1

 = MN

ũt−2ũt−1
ũt

+

00
ε̃t

 , ε̃t
i.i.d.∼ N (0, σ2εI3),

ũt+1 = fNN (ũt−2, ũt−1, ũt)+ε̃t, HN =
[
0 0 I3

]
,

(7)

where fNN (·) is the fitted NN predictor.

4.1. Independent and identically distributed observational error. In this subsection, we

consider the observational error ηt
i.i.d.∼ N (0, σ2ηI3) and investigate the effects of model error

on the likelihood functions. When there is no model error, the log-likelihood function of the
initial state u0 satisfies

(8) 2ln(u0) = −
n−1∑
k=0

∥∥∥wk −HMk(u0)
∥∥∥2 /σ2η − 3n log(σ2η)− 3n log(2π),

and the profile log-likelihood function obtained by profiling over σ2η satisfies

2l̃n(u0) = −3n log(σ̂2η)− 3n log(2π)− 3n,

σ̂2η =
1

3n

n−1∑
k=0

∥∥∥wk −HMk(u0)
∥∥∥2 .(9)

In our experiments, the standard deviation for the observational error is ση = 10−3, and that
for the model error is chosen as small as σε = 10−12. We are interested in comparing the
likelihoods (8) and (9) for observations generated with and without model errors. Specifically,
we investigate the likelihood functions on a range of the last element of the initial state while
fixing the other elements at their true values. Note that although the dimension of the state
vector is nine for the NN model, the last element of a state corresponds to the z coordinate
of the most recent observation. For the NN model, the simulated observations manifest a
qualitatively similar attractor as the real data. Figures SM4–SM5 in Supplement SM1 show
realizations of the simulation models.
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Figure 13. Profile (i.e., maximized over σ2
η) log-likelihoods (9) (top row and bottom left panel) and log-

likelihood (8) (bottom right panel) for a range of the ninth element of the initial state with the other elements
fixed at their true values. The simulated NN model MN has no model error and has observational error

ηt
i.i.d.∼ N (0, σ2

ηI3), ση = 10−3. Labels on the horizontal axes are differences of the simulation points minus the
true initial state. The plus sign indicates true initial state.

For the NN model, Figure 13 shows, with no model error, the likelihoods on a range of
the ninth element of the initial state with the other elements fixed at their true values. We
observe the same general pattern as in [11]: the likelihood functions on a fixed interval of initial
states become more jagged and irregular as we increase the number of observations, and only
show some smoothness when focusing on a narrower interval (see, for example, the top right
and bottom left panels of Figure 13). In addition, much more information about the true
initial state can be learned with more observations, since the relative difference of the profile
log-likelihoods between the true initial state and the neighboring simulation points becomes
more pronounced. Note that for a fixed number of observations, the profile log-likelihood is
dramatically sharper than the log-likelihood at the true initial state with σ2η fixed at its true
value, and hence contains more information about the truth.

The top right panel of Figure 13 seems to indicate that the true initial state maximizes
the profile log-likelihood. Admittedly, the simulation is based on finitely many discrete points
in some neighborhood of the true initial state, and hence does not fully represent the entire
likelihood function. However, to add evidence to the remark that the true initial state can be
identified as the maximizer of the likelihood function under no model error, in the bottom left
panel of Figure 13, we evaluate the profile log-likelihood for 1000 points of the ninth element
of the initial state in the interval (u0(9)− 10−12, u0(9) + 10−12) when n = 4000. In this case,
the distance between the true initial state and the closest simulation point is on the order
of 10−15, and the true initial state still has the largest likelihood in the simulation interval.
Note that due to the finite precision of computers, the model being simulated essentially has a
discrete state space, and a difference of 10−15 is fairly close to machine precision. As a result,
the true initial state may maximize the likelihood for a large enough number of observations
given the effectively discrete state space. In section 4.2, we will look more closely into the
comparison of the likelihoods of the true initial state and its neighbors for an increasing
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Figure 14. Profile (i.e., maximized over σ2
η) log-likelihoods (9) (all four panels) for a range of the ninth

element of the initial state with the other elements fixed at their true values. The simulated NN model MN has

model error ε̃t
i.i.d.∼ N (0, σ2

εI3) as defined in (7), σε = 10−12, and has observational error ηt
i.i.d.∼ N (0, σ2

ηI3),
ση = 10−3. Labels on the horizontal axes are differences of the simulation points minus the true initial state.
The plus sign indicates true initial state.

number of observations. Finally, we point out that the simulation model considered here is
an NN which by no means is designed to produce chaotic dynamics. However, it does yield a
system that, when there is no model error, produces results for the likelihood with respect to
the initial state like those shown in [11].

Figure 14 shows the profile log-likelihoods on a range of the ninth element of the ini-
tial state with the other elements fixed at their true values under a small model error with
standard deviation σε = 10−12. Similar to the case without model error, we observe wilder
behavior of the likelihood functions with more observations. However, increasing the num-
ber of observations from 2000 to 4000 no longer helps much in identifying the true initial
state. In the top row of Figure 14, although more observations make the profile log-likelihood
more concentrated around the true initial state, the difference in log-likelihoods between the
true initial state and the neighboring points only increases slightly, compared with the sharp
increase under no model error (top row of Figure 13). The pattern is more obvious on a
smaller scale: see the bottom row of Figure 14, where the true initial state clearly no longer
maximizes the likelihood. When the number of observations increases, we do not gain more
information about the true initial state. An interesting feature to note in this case is that
in the bottom row of Figure 14, the profile log-likelihood attains local maxima at different
points when n = 4000 and n = 6000. It shows that, even with the correct dynamics for
the deterministic part of the model, there does not exist a starting point that can track this
simulated NN system with even a tiny stochastic model error for an indefinitely long time.

We highlight that the models considered here are derived from observed data and are
not simulations under some idealized chaotic system like the logistic map. Therefore, Figures
13 and 14 show that the similarly irregular behavior of the likelihoods as those in [11] can
happen under a dynamical system estimated from data when there is measurement error but no
model error. However, Figure 14 shows that even a tiny model error can dramatically affect the
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identifiability of the initial state when there is a sufficiently large number of observations. This
result suggests that real systems, which we maintain should essentially always contain some
stochastic model error, will not behave like idealized deterministic chaos plus measurement
error when inferring the initial state from the observations. Moreover, the irregular behaviors
of the log-likelihoods shown in Figures 13 and 14 also suggest that the estimation of the
initial state would be an exceedingly difficult optimization problem in practice, especially if
the unknown initial state were vector-valued.

Finally, we note that the patterns observed in Figures 13 and 14 do not depend on the
structure of the NN. For example, we fit a one-layer NN with 20 neurons using the same
training set and embedding length m = 3. Figures SM6–SM7 in Supplement SM1 show the
similar behaviors of the log-likelihoods of the initial state under increasing observations. Fur-
thermore, the “chaotic likelihood” is not particular to NN models and can also be reproduced
by GP models fitted to the circuit data. For instance, we fit a GP model by maximizing (3)
using the initial 4000 observations with an embedding length m = 2. Figure SM8 in Supple-
ment SM1 shows the profile log-likelihoods (9) of the last element of the initial state under
no model error. The likelihood functions become increasingly jagged and concentrated at the
true initial state with more observations.

4.2. Temporally correlated observational error. In this subsection, we consider obser-
vational errors that are temporally correlated with an AR(1) structure. That is, we have

ηt = φηt−1 + vt for some φ ∈ R and vt
i.i.d.∼ N (0, σ2vI). A temporally correlated observational

error can be used to model dependencies in the measurement process resulting from, for exam-
ple, a limited instantaneous rate of response to changes in signal for the measurement device.
When there is no model error, the profile log-likelihood function of the initial state obtained
by profiling over σ2η satisfies

(10) 2l̃n(u0) = −3n log (σ̂2η)− log (|R|)− 3n log (2π)− 3n,

where

σ̂2η =
eTR−1e

3n
, R = toeplitz(1, φ, . . . , φn−1)⊗ I3, e =

[
wk −HMk(u0)

]n−1
k=0

.

We take φ = 0.9 and σv = 10−3 as the standard deviation for the innovation. Realizations
of the simulated model under this temporally correlated observational error again form an
attractor similar to that of the real data and are shown in Figure SM9 in Supplement SM1.

Figure 13 showed that more information about the true initial state can be learned with
more observations under i.i.d. observational error. We now investigate this finding in more
detail and compare the effects of different observational error structures. We use the differ-
ence in the profile log-likelihood function between the true initial state and the neighboring
simulation points as a measure of identifiability of the true initial state. The neighboring
simulation points are taken on a regular grid centered at the last three elements of the true
initial state for the NN model. With this specification, we have a total of 26 simulation points
excluding the true initial state. Denote the shortest distance from the simulation points to
the true initial state as d. An illustration of this setup of the simulation points is shown in
Figure SM10 in Supplement SM1.
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Figure 15. Difference in the profile log-likelihood function between the true initial state and the neighboring
simulation points for the NN model with no model error for various n. Numbers in the legend are the distances
d between the simulation points and the true initial state.

Figure 15 shows, for the NN model, the differences in the profile log-likelihood functions (9)
and (10) under i.i.d. and AR(1) observational errors, respectively. For each observational error
type, we experiment with simulation points closer to the true initial state with d = 2× 10−15

and those further away with d = 10−5. In accordance with the feature shown in the top
row of Figure 13, as the number of observations increases, the difference of the profile log-
likelihood between the true initial state and the neighboring points increases under both
types of observational errors. Note that the linear rate of the increase in Figure 15 implies an
exponential rate of increase in the likelihood ratio. In addition, as indicated by the larger slope
of the dashed lines, the information about the true initial state grows faster in the number of
observations for the i.i.d. observations than for the AR(1) observational errors measured with
the same set of simulation points.

For both types of observational errors, the difference in the profile log-likelihood is larger
between the true initial state and the simulation points further away than those closer. How-
ever, this discrepancy between points at different distances to the true initial state diminishes
as the number of observations increases. This pattern shows that the neighboring points,
regardless of their distance to the true initial state, become similarly worse in tracking the
observations relative to the true initial state. This is due to the chaotic feature of the system
so that even a tiny departure from the true initial state can lead to significant divergence in
the propagation with a long enough horizon. In other words, an initial state with a tiny but
nonzero departure from the truth, in the long run, does not have much advantage in tracking
the observations over an initial state with a large departure.

We note a theoretical result [33, Theorem 3] regarding signal extraction that is relevant to
what Figure 15 shows. That result proves that, for an invertible chaotic system Ψ under no
model error and Gaussian observational noise, it is impossible to consistently infer any single
state from the infinite two-sided observation time series. The result is established based on the
existence of homoclinic points. Two points x0 6= x′0 constitute a homoclinic pair [28, 33, 34]
if lim|n|→∞(1 + α)|n||Ψn(x0) − Ψn(x′0)| = 0 for some α > 0. In words, the trajectories of the
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two distinct points approach each other exponentially quickly both forward and backward
in time. Consequently, if the observational noise is unbounded, for example Gaussian, there
is a positive probability that no matter how many observations one has, the true state x0
that generates the observations has a lower likelihood than its homoclinic point x′0, and hence
cannot be inferred from the data. However, for all realizations of the ODE and NN models we
have experimented with, we find that the true initial state has the highest likelihood among
the simulation points, and we appear to gain exponentially growing information about the
truth with more observations. One possible resolution for this apparent discrepancy between
the theory and our empirical results lies in the relatively small observational noise used in the
simulations, which leads to a perhaps tiny, though positive, probability that the homoclinic
point gives a higher likelihood than the true initial state. As a result, we do not observe the
effects of homoclinic points in our limited number of simulations.

4.3. Simulations with electronic noise. In this section, we consider the simulated NN
model MN with no observational error and a model error estimated from a reconstructed
physical circuit. The circuit was built using the same components as those in [38] and was
fully covered to be thermally controlled at 20 ◦C. We expect this reconstructed circuit to
mimic the circuit system in [38], and thus provide an estimate of the model error encountered
in reality. The model error in this case is taken to be the electronic noise in the circuit, which
consists mostly of the Johnson (thermal) noise [31]. The Johnson noise is approximately
white and has very nearly a Normal distribution [8]. The standard deviation for the Johnson
noise was measured for one component in the circuit expected to contribute the most to the
entire noise level, and was estimated to be 100µV with a 3dB bandwidth of 1kHz set by
the integrator of the circuit. Thus, we maintain that the noise level for the entire circuit in
[38] should fall in the range 100µV to 400µV by taking into account the noise contributed
from other components and that the experiment in [38] was conducted with a higher room
temperature. The simulated NN model with a model error implied by the physical circuit
can be regarded as at least a fair approximation to the underlying dynamics of the circuit
system. As a result, the performance of two realizations generated from this simulation model
in tracking each other sets a benchmark on how well any fitted model can possibly track
the observations. In the following, we revisit the fitted GP and NN models in section 3 and
evaluate their tracking abilities by comparing with the simulation model under the estimated
range of the model error.

Figure 16 shows the histograms of the average areas between the fitted GP model propaga-
tions and the real observations, and those between two realizations of the simulated model (7)
for the same 500 starting points considered in section 3. The results for the fitted NN model
in section 3 are very similar, and a comparison of both models with the simulations is shown
in Figure SM11 in Supplement SM1. For a smaller estimate of the model error σε = 10−4,
the tracking performance of the GP model is clearly inferior to the simulation model. It in-
dicates that the fitted models do not seem to fully capture the dynamics if the model error
is indeed this small. However, as the model error increases, we see much better agreement
between the fitted models and the simulations. As discussed previously, the smaller end of the
model error estimate σε = 10−4 is measured with one component of the reconstructed circuit,
while the noise level of the entire circuit in [38] is expected to be larger due to contributions
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Figure 16. Histograms (gray) of average areas between real observations and GP model propagations
(embedding length m = 2) in 2000 steps for the 500 starting points considered in section 3; histograms (white
with solid bar outlines) of average areas between two realizations in 2000 steps from (7) under model error
with standard deviation σε and no observational error for the same 500 starting points. From left to right:
σε = 10−4, 2× 10−4, 3× 10−4, 4× 10−4. Histograms are normalized so that the areas of bars in each histogram
sum to one.

from other components and a higher temperature. Consequently, the fitted GP model may
approach the limit of how well one can track the system in the presence of a stochastic model
error in the circuit. Table 1 additionally supports this point by showing the proportions of
starting points from which the simulation model produces a smaller tracking area than the
fitted models tracking the observations. When the model error σε = 10−4 is small, the track-
ing performance of the fitted models is worse than that of the simulations for around 65% of
the starting points. However, for larger model errors, for example when σε = 3 × 10−4, the
fitted models track better compared with the simulations for about half of the starting points.
Thus, if the true model error has this plausible standard deviation of 3× 10−4, then the GP
and NN models track the system as well as possible.

Table 1
Proportions of starting points for which the average area between two trajectories is smaller for the simu-

lations than for the GP and NN model propagations tracking the real observations. The simulation trajectories
for each starting point are two realizations from (7) under model error with standard deviation σε and no
observational error.

σε 10−4 2× 10−4 3× 10−4 4× 10−4

GP 68.8% 56.2% 49.4% 43.2%
NN 65.4% 54.8% 46.8% 46.2%

5. Discussion. The analysis of observations generated from unknown nonlinear and cha-
otic dynamical systems poses significant challenges to modeling the underlying dynamics and
characterizing stochastic model and observational errors. We looked into some aspects of
these problems with voltage measurement data generated by a laboratory-built electrical cir-
cuit. The nominal model of the measurements and more sophisticated physical models using
a circuit simulator show notable deficiencies in capturing the dynamics in the observations, so
we turned to GP and NN models that are trained for one-step prediction. With the squared
exponential covariance for GP and the feed-forward NN configurations we considered, both
models perform similarly in one-step prediction. The prediction error decreases as the em-
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bedding length increases. However, good short-term prediction does not necessarily lead to a
good representation of the underlying dynamics. As we show for both GP and NN models,
the best performance in tracking the observations long-term occurs at a moderately valued
embedding length, while a larger embedding length results in quick deterioration in the track-
ing abilities. A natural alternative to fitting the circuit data is to use a state space model.
We experimented with fitting one assuming no model error and a Normal observational error
using a likelihood method. In particular, we used a GP for the dynamics and estimated the
initial states, parameters of the GP, and observational error covariance by maximizing the
likelihood function. However, we were not able to obtain results better than the fitted GP
and NN predictors. The underperformance of the state space model in this case may be caused
by the nonnegligible model error present in the circuit system that contains thermal noise. It
is very difficult to estimate parameters for the deterministic nonlinear dynamics, model error
covariances, and observational error covariances simultaneously, and we did not experience
success when we tried such an approach.

To learn more about the effects of model and observational errors on the likelihood func-
tion of the initial state, we turned to simulations. The simulated data were generated by our
fitted NN model, which manifests a low-dimensional attractor and chaotic features similar to
the observations. We found that the effects of model and observational errors on inferring the
initial state are quite different. In the absence of model error, when there are enough obser-
vations, the true initial state appears to maximize the likelihood function, and the likelihood
ratio between the true initial state and neighboring points grows exponentially in the number
of observations. Temporally correlated observational errors result in a slower rate of increase
for the likelihood ratio but preserve the exponential growth. However, in the presence of a
model error, even with a standard deviation as small as 10−12, an increasing number of ob-
servations no longer provides unboundedly increasing information about the true initial state
through the likelihood function. Moreover, in this case, there does not seem to exist an initial
state capable of tracking the observations indefinitely even with the correct dynamics.

Note that the standard deviation of the model error considered in section 4.1 is significantly
smaller than the measured electronic noise in the circuit, yet it is still impossible, through the
likelihood function, to identify the initial state and hence track the observations in the long
term even with the correct deterministic part of the dynamics. This points out that chaotic
systems in reality, which almost always contain stochastic model errors, do not behave as
ideally as toy systems for deterministic chaos in terms of the identifiability of the initial state
under an increasing number of observations. More optimistically, our comparisons in section
4.3 show that it may be possible, at least in some cases, to construct predictors that generate
long-term predictions approaching the tracking limit of the system given the existence of a
stochastic model error in the dynamics.
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