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EXPONENTIALLY ACCURATE TEMPORAL DECOMPOSITION
FOR LONG-HORIZON LINEAR-QUADRATIC DYNAMIC

OPTIMIZATION∗

WANTING XU† AND MIHAI ANITESCU‡

Abstract. In this work, we investigate a temporal decomposition approach to long-horizon
dynamic optimization problems. The problems are discrete-time, linear, time dependent, and with
box constraints on the control variables. We prove that an overlapping domains temporal decom-
position, while inexact, approaches the solution of the long-horizon dynamic optimization problem
exponentially fast in the size of the overlap. The resulting subproblems share no solution information
and thus can be computed independently in parallel. Our findings are demonstrated with a small,
synthetic production cost model with real demand data.
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1. Introduction. Long-horizon dynamic optimization problems appear in sev-
eral application areas [1, 2, 7, 9, 10, 13, 16] and pose significant computational chal-
lenges because of the increase in the number of variables in proportion to the number
of time periods considered. One very long horizon instance is optimal planning in the
electrical power industry for transmission or generation expansion [1], which we now
describe in some detail.

Such a planning analysis involves a production cost model (PCM). A PCM sim-
ulates the operation of generation and transmission systems by finding, during each
time interval, the least-cost solution to generating sufficient energy to meet demand.
As an abstraction, it is an optimal control problem, which can have nonlinear dy-
namics, control, and state constraints. Most studies require running a PCM on an
hourly scale for 1–20 years under different scenarios in order to address the operation
and reliability aspects of the proposed transmission or expansion plan [21]. Doing so
can result in a very large number of periods. For example, if a PCM is run for 12
years with an hourly scale, the number of time periods would exceed 100,000. Added
to this are the tens of thousands of degrees of freedom at one time point, which are
characteristic for planning at the interconnect level, making the problem a daunting
one to solve. As a result, many planning studies, which involve investments of billions
of dollars, are done with multiple approximations to make them fit the computing
resources [20].

Researchers have therefore sought to identify approaches for long-horizon dynamic
optimization that result in efficient temporal parallelism to address this complexity by
bringing to bear more computing power. Approaches have included temporal decom-
position strategies using Lagrangian decomposition [2, 13, 16] and a two-level opti-
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mization formulation with the lower level derived from a decomposition approach [9].
These ideas create the opportunity for faster computation using parallelism. For in-
stance, a heuristic decomposition algorithm is presented in [10] for scheduling a batch
chemical plant. The problem is decomposed into more tractable subproblems that
are solved to optimality. Empirical evidence suggests largely reduced computational
efforts and reasonable accuracy. Strengths and weaknesses of a number of temporal
decomposition methods are investigated in [2]. A multiperiod nonlinear programming
model is developed in [16] for production planning and distribution. Temporal de-
composition is used for the solution and is shown to generate faster computation and
good accuracy of the optimal solutions.

A recent approach for PCMs is to partition the simulation horizon and turn the
annual problem into multiple overlapping weekly/monthly problems [1] that compute
the contribution of an inner time interval only to the overall objective and then add
up all these contributions. While such an approach cannot be an exact decomposition,
it can be computed in parallel without information exchange between the problems on
each decomposition interval, and therefore the computation can be sped up. Moreover,
researchers showed empirically in [1] that the error in the approach drops rapidly with
the increase of the buffer region (the overlapping area) surrounding the inner time
interval.

Our aim here is to provide theoretical support for approximate temporal de-
composition of dynamic optimization problems with long horizons using overlapping
intervals such as the work in [1]. A particular focus is on characterizing the error
made by using such approximations.

For this initial foray, we will use a considerably simpler model than the PCMs in [1]
or other planning models [16]. That is, our formulation is the following optimization
problem:

min
un1:n2−1,xn1:n2

n2−1∑
k=n1

uTkRkuk + (xk − dk)TQk(xk − dk)(1.1a)

+(xn2 − dn2)TQn2(xn2 − dn2)(1.1b)

subject to (s.t.) xk+1 = Akxk +Bkuk, xn1 = x0
n1
,(1.1c)

lk ≤ uk ≤ bk, n1 ≤ k ≤ n2 − 1,(1.1d)

for some given initial value x0
n1

. We call such a problem a linear-quadratic dynamic
optimization problem. Such problems are known under various other names such
as linear-quadratic (model predictive) control [12] or dynamic programming [4]. We
choose the name dynamic optimization for problem (1.1) [8, 11] as we are interested
in finding the solution of the optimization problem rather than computing the con-
trol rule or policy functions themselves. We will, however, use the terms control and
dynamic programming as well when referring to the existing results and their inter-
pretations. In (1.1) [n1, n2] is the entire time horizon under consideration, and xn1

is
known. We respectively refer to xk, uk, and dk as the supply or generation, control,
and reference trajectory (also known as demand in PCM contexts). Problem (1.1) has
a few simplifications and changes [1, 16]: our objective is quadratic and not linear,
and we do not allow for integer variables. We note that these approximations are used
in the target areas. Quadratic objectives are sometimes used instead of linear for the
one-period cost function [18]. Economic dispatch, that is, a version of PCM where
the scheduling decisions are all known in advance and thus no integer variables are
present, is used in planning studies [3]. A more important approximation is that we
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Fig. 1.1. Illustration of the temporal decomposition scheme with three decomposition intervals.
The entire horizon [n1, n2] is decomposed into subintervals S1:3, which are embedded in regions F1:3

correspondingly. The red areas are buffer regions, each of length Ω.

do not allow for hard path constraints. For example, supply and demand mismatch is
penalized in the objective but not enforced to be zero. Approaches exist to accommo-
date supply equaling demand, at least in some circumstances, as will be done in our
numerical example in section 4; we do not claim, however, that this can be done in
general. Given the complexity of the analysis with even this simplified formulation,
extensions that obtain results like ours under circumstances closer to [1, 16] will be
investigated in future research.

Our approach, however, retains two important features from planning models
that allow us to investigate approximate temporal decomposition: intertemporal con-
straints (1.1c) and box constraints on the control (1.1d). In particular, it allows us
to substantiate a key insight that makes the temporal decomposition approach work
efficiently. That is, when the system (1.1c) is controllable, the closed loop control
law attached to the optimal active set results in an asymptotically stable policy [4].
In turn, the effect of perturbations of the parameters dk and initial state xn1 on the
solution decreases exponentially with the distance in time between the perturbation
moment and the index of the state. Hence, the system can forget its past and ignore
its future exponentially fast with the distance from both.

This observation suggests the following temporal decomposition approach. Given
a fixed time period Si ⊂ [n1, n2], we are interested in finding a shorter embedding
interval Fi with Si ⊂ Fi ⊂ [n1, n2], so that the solution on Si obtained by solving
problem (1.1) on Fi is close to the one obtained by solving problem (1.1) on [n1, n2].
As a result, the entire horizon can be decomposed approximately, but with little error,
into pieces like Si, and the optimal solutions on each piece can be computed in parallel
by solving problem (1.1) on Fi. Figure 1.1 illustrates this decomposition scheme (see
color figure in online version). The temporal decomposition approach then consists
of approximating the optimal value of problem (1.1) on [n1, n2] by the sum of the
optimal values on Si obtained from solving (1.1) on Fi, over all i. A formal definition
of this decomposition approach is presented in section 3.

Our goal is to estimate the error of this decomposition approach. In our proofs we
will use several results from optimal control theory, which were done for the case in
which dk = 0 and in the absence of the bound constraints (1.1d), with respect to the
notation in (1.1). In that case, the solution of (1.1) is provided by the linear-quadratic
regulator (LQR), a feedback control law to achieve minimal cost. A derivation of the
finite-horizon, discrete-time LQR based on the dynamic programming principle can
be found in [4], which also shows that the resulting optimal trajectory tracks zero
exponentially fast for time-independent linear systems. In this work, one particular
control feature we will characterize and use is the rate of stabilization of the opti-
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mal trajectory for discrete-time, time-varying linear-quadratic dynamic optimization
problems. To this end, Zhang, Hu, and Abate [23] derive some important proper-
ties for the finite-horizon and infinite-horizon value functions of the switched system
discrete-time, linear-quadratic dynamic optimization. The authors show that under
some mild assumptions the optimal trajectory stabilizes exponentially, and they give
a workable estimate of that rate that we will use here. Some algorithms based on
those theoretical results are also shown in [22] and [24]. A similar result to our The-
orem 3.11, which upper bounds the approximation error of the optimal cost for the
temporal decomposition approach, is given in [17]. The authors show that, for a
class of constrained discrete-time systems, the infinite-horizon cost associated with
the moving-horizon feedback law converges to the optimal infinite-horizon cost as
the moving horizon is extended. Our work inherits similar temporal decomposition
features as those in [17]. However, in this paper we additionally prove that, with a
long but finite horizon, the solutions on the decomposition intervals converge as the
embedding regions increase. Moreover, we characterize the convergence rates for the
solutions and optimal cost as exponentially fast, which is crucial for the approach to
be practical.

The rest of the article is organized as follows. Section 2 proves results about the
box constrained control linear-quadratic problem. Section 3 describes the temporal
decomposition approach and proves, based on the results derived in section 2, that
the error of the temporal decomposition method decays exponentially in the size of
the embedding interval. In section 4, we illustrate the theoretical findings by applying
the temporal decomposition approach to a production cost model using real demand
data. Proofs of results that are not central to the development of the main ideas are
presented in Appendix A.

2. Box constrained control linear-quadratic problem. In this section, we
derive results for a subproblem of the following box constrained control linear-quadrat-
ic problem:

min
un1:n2−1,xn1:n2

Γn1:n2(un1:n2−1, xn1:n2)
∆
=

n2−1∑
k=n1

uTkRkuk + (xk − dk)TQk(xk − dk)

(2.1a)

+ (xn2
− dn2

)TQn2
(xn2

− dn2
)(2.1b)

s.t. xk+1 = Akxk +Bkuk, xn1
= x0

n1
,(2.1c)

lk ≤ uk ≤ bk, n1 ≤ k ≤ n2 − 1,(2.1d)

where the initial state x0
n1

is given. Throughout the article, we have that Ak ∈ Rn×n,
Bk ∈ Rn×m, and Rk, Qk are positive definite matrices. We make the following uniform
boundedness assumption about the system.

Assumption 2.1. For any n1, n2, n1 ≤ q ≤ n2, we have the following:
(a) ‖Aq‖2 ≤ CA, ‖Bq‖2 ≤ CB , ‖Qq‖2 ≤ CQ, ‖Rq‖2 ≤ CR for some CA, CB , CQ,

CR > 0, and CA 6= 1.
(b) λmin(Qq) ≥ λQ > 0, λmin(Rq) ≥ λR > 0.
(c) ‖bq‖, ‖lq‖ ≤ U for some U > 0.

Note that in Assumption 2.1(a), since CA is the uniform upper bound of ‖Aq‖2,
we can assume CA 6= 1 in general. The subproblem of (2.1) we consider is an equality
constrained problem obtained by considering some active subset of the box control
constraints (2.1d).
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2.1. An equality constrained subproblem. To define the equality constrain-
ed subproblem, we let Ik ⊂ {1, . . . ,m} be some index set for the elements of uk
attaining either the upper or lower bound of (2.1d), and define Nk = Ick. Let ei be
the ith standard basis vector. We associate Ik with a selection matrix Ck and a vector
b̄k defined as follows:
(2.2)

Ck(i, :) =

{
eTji , uk(ji) = lk(ji),

−eTji , uk(ji) = bk(ji),
b̄k(i) =

{
lk(ji), uk(ji) = lk(ji),

−bk(ji), uk(ji) = bk(ji),

where i = 1, . . . , |Ik| and ji is the ith element in Ik. With these definitions, the
equality constraints corresponding to Ik can be expressed as Ckuk = b̄k and the
equality constrained subproblem is defined as

min
un1:n2−1,xn1:n2

n2−1∑
k=n1

uTkRkuk + (xk − dk)TQk(xk − dk)

+ (xn2
− dn2

)TQn2
(xn2

− dn2
)

s.t. xk+1 = Akxk +Bkuk, xn1 = x0
n1
,

Ckuk = b̄k, n1 ≤ k ≤ n2 − 1.

(2.3)

Note that when Ik is the active set of problem (2.1) at optimality, problems (2.3) and
(2.1) have the same solutions.

Problem (2.3) is the primary topic we consider in this section and will appear
later in section 3 in a sensitivity analysis needed to prove temporal decomposition. In
the rest of this subsection, we focus on deriving properties for the solution of problem
(2.3) for some index set Ik. In particular, we will show the exponential decay property
of the dependence of the solutions of problem (2.3) on the initial state and terminal
reference under certain conditions. This is crucial in establishing the main temporal
decomposition results in section 3. To start with, we note that a reduced problem
can be obtained by eliminating the equality constraints of (2.3). We partition uk, Bk,
and Rk into blocks corresponding to Ik and Nk. Denote

ũk = [uk(i)]i∈Ik , B̃k = [Bk(:, i)]i∈Ik

as the elements (or columns) of uk (or Bk) corresponding to the equality index set
Ik. Similarly, for Nk, correspondingly write

ûk = [uk(i)]i∈Nk , B̂k = [Bk(:, i)]i∈Nk .

Also, Rk can be partitioned into blocks corresponding to the index sets as follows:

R̂k = [Rk(i, j)]i∈Nk,j∈Nk , R̃k = [Rk(i, j)]i∈Ik,j∈Ik , R̄k = [Rk(i, j)]i∈Ik,j∈Nk .

Then we have that

Bkuk = B̂kûk + B̃kũk,

uTkRkuk = ûTk R̂kûk + 2ũTk R̄kûk + ũTk R̃kũk,

and that the equality constraint Ckuk = b̄k is equivalent to ũk = b̃k, where the ith
element of b̃k is lk(ji) (or bk(ji)) if uk(ji) attains the lower bound lk(ji) (or the upper
bound bk(ji)) for i ∈ {1, . . . , |Ik|}, ji ∈ Ik. Define a change of variable as follows:

vk = ûk + R̂−1
k R̄k b̃k,

fk = B̃k b̃k − B̂kR̂−1
k R̄k b̃k.

(2.4)
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Note that R̂k is invertible since Rk is positive definite. Then (u∗k, x
∗
k) is the solution of

problem (2.3) if and only if (v∗k, x
∗
k), defined by (2.4), is the solution of the following

problem:

min
vn1:n2−1,xn1:n2

n2−1∑
k=n1

vTk R̂kvk + (xk − dk)TQk(xk − dk)(2.5a)

+ (xn2
− dn2

)TQn2
(xn2

− dn2
)(2.5b)

s.t. xk+1 = Akxk + B̂kvk + fk, n1 ≤ k ≤ n2 − 1, xn1
= x0

n1
.(2.5c)

One can easily verify that (2.4) defines a one-to-one correspondence between the
feasible sets of problems (2.3) and (2.5) and that the objective functions differ by a
constant for the corresponding elements in the feasible sets. Note that the optimal
values of problems (2.3) and (2.5) differ by a constant. However, since we are only
interested in the solutions of problem (2.3) with which the solutions of problem (2.5)
have a one-to-one relationship (2.4), we thus solve problem (2.5) in order to investigate
properties for the solutions of (2.3).

Problem (2.5) is a linear-quadratic optimal control problem for which we need
a notion of controllability for the sequence pair {Ak, B̂k}k=n1:n2

. Note that B̂k is
uniquely determined by the index set Ik under consideration, and hence the choice of
the index sets I ∆

= {Ik} will affect the controllability of the resulting {Ak, B̂k}. We
make the following definition of controllability.

Definition 2.2. For some index sets I = {Ik}k=n1:n2 , let B̂k = [Bk(:, i)]i∈Ick .
With some λC > 0, t > 0 both independent of n1 and n2,

(a) define the controllability matrix associated with time steps [q, q + t− 1] as

Cq,t(I) =
[
B̂q+t−1 Aq+t−1B̂q+t−2 · · ·

(∏t−1
l=1 Aq+l

)
B̂q

]
;

(b) the index set I is uniformly completely controllable with parameters λC and t,
denoted by UCC(λC , t), if the sequence pair {Ak, B̂k} is uniformly completely
controllable with parameters λC and t [17, Definition 3.1], i.e., for any n1 ≤
q ≤ n2,

λmin
(
Cq,t(I)CTq,t(I)

)
≥ λC > 0.

Now we derive the optimal control law and optimal states for problem (2.5) using
a dynamic programming approach. When dk ≡ 0, ∀k ∈ n1 : n2, and fk ≡ 0, ∀k ∈
n1 : (n2 − 1), the solution to problem (2.5) is well known from classical dynamic
programming references. For our temporal decomposition, however, the dependence
on dk is crucial, whereas fk 6= 0 is needed as an artifact of the box constraints. To
simplify our notation, we use a reverse product notation as follows.

Definition 2.3. We define

n∏
i=m

Ai =

{
An · · ·Am, n ≥ m,
I, n < m.
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Proposition 2.4. For n1 ≤ k ≤ n2 − 1, the optimal control laws for problem
(2.5) are

v∗k(xk) = Lkxk +W−1
k

n2∑
i=k+1

B̂Tk
(
Mk+1
i

)T
di

+W−1
k

n2−1∑
i=k+1

B̂Tk
(
Sk+1
i

)T
fi −W−1

k B̂kKk+1fk,

(2.6)

where

Kn2
= Qn2

,(2.7a)

Kk = ATk (Kk+1 −Kk+1B̂kW
−1
k B̂Tk Kk+1)Ak +Qk, n1 ≤ k ≤ n2 − 1,(2.7b)

Wk = R̂k + B̂Tk Kk+1B̂k, n1 ≤ k ≤ n2 − 1,(2.7c)

Lk = −W−1
k B̂Tk Kk+1Ak, n1 ≤ k ≤ n2 − 1,(2.7d)

Dk = Ak + B̂kLk, n1 ≤ k ≤ n2 − 1,(2.7e)

Mk
i = Qi

i−1∏
l=k

Dl, i ≥ k, n1 ≤ k ≤ n2,(2.7f)

Ski = −Ki+1

i∏
l=k

Dl, i ≥ k, n1 ≤ k ≤ n2 − 1.(2.7g)

Proof. See Appendix A.1.

We note that (2.7b)–(2.7e) and the expression of v∗k when dk ≡ 0, fk ≡ 0 are the
results of classical LQ control.

Definition 2.5. For n1 ≤ k ≤ n2 − 1, define

Ek = B̂TkW
−1
k B̂k,

where Wk is defined in (2.7c).

Proposition 2.6. Let x∗n1+1:n2
be the optimal states of (2.5). Then we have that

x∗k =

(
k−1∏
i=n1

Di

)
xn1 +

n2∑
i=n1+1

Cki di +

n2−1∑
i=n1

F ki fi,(2.8)

where

Cki =

min (i,k)−1∑
s=n1

(
k−1∏
l=s+1

Dl

)
Es
(
Ms+1
i

)T
,

F ki =

min (i,k)−1∑
s=n1

(
k−1∏
l=s+1

Dl

)
Es
(
Ss+1
i

)T
+

(
k−1∏
l=i+1

Dl

)
(I − EiKi+1)1(k≥i+1).

(2.9)

Proof. See Appendix A.2.

Next we investigate the properties of Kk defined by the Riccati recursion (2.7b)
and the closed-loop matrices Dk defined in (2.7e). In the following, we only consider
the index sets that are UCC(λC , t) according to Definition 2.2.
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Proposition 2.7. Under Assumption 2.1, if the index set I is UCC(λC , t), then
for any n1 ≤ q ≤ n2 we have that ‖Kq‖2 ≤ β for some β > 0 independent of n1, n2,
and the particular choice of I.

Proof. We note from the definition (2.7b) of matrix Kq that, while it is a function
of the quantities in Definition 2.2, it does not depend on the reference dk or the shift
fk. We will thus consider it on the system for which dk and fk are 0. That is, for any
xq ∈ Rn, consider the problem

min
uq:n2−1,xq:n2

n2−1∑
k=q

uTk R̂kuk + xTkQkxk + xTn2
Qn2xn2(2.10a)

s.t. xk+1 = Akxk + B̂kuk, q ≤ k ≤ n2 − 1.(2.10b)

For k ≥ q, successively applying xk+1 = Akxk + B̂kuk gives that, for j ≥ 0,

xq+j −

(
j−1∏
l=0

Aq+l

)
xq =

[
B̂q+j−1 Aq+j−1B̂q+j−2 · · ·

(∏j−1
l=1 Aq+l

)
B̂q

]uq+j−1

...
uq

 ,
(2.11)

and for j = t (2.11) reduces to

xq+t −

(
t−1∏
l=0

Aq+l

)
xq = Cq,t

uq+t−1

...
uq

 .
I being UCC(λC , t) implies that Cq,t is uniformly completely controllable, and in
particular that Cq,t has full row rank. Then there exists û = (ûTq , . . . , û

T
q+t−1)T so

that

−

(
t−1∏
l=0

Aq+l

)
xq = Cq,t

ûq+t−1

...
ûq

 .(2.12)

Several û satisfy this relationship; we consider the one defined by

û = −CTq,t(Cq,tCTq,t)−1

(
t−1∏
l=0

Aq+l

)
xq.(2.13)

Denote the corresponding states generated with ûq:q+t−1 by x̂q:q+t; then x̂q+t = 0 by
(2.12).

Assumption 2.1(a) implies that

max
1≤j≤t

∥∥∥[B̂q+j−1 Aq+j−1B̂q+j−2 . . .
(∏j−1

l=1 Aq+l

)
B̂q

]∥∥∥
2

≤ max
1≤j≤t

(
CB + CACB + . . .+ Cj−1

A CB

)
≤ CB (1− CtA)

1− CA
∆
= M.
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Moreover, since CTq,t(Cq,tC
T
q,t)
−1 in (2.13) is the Moore–Penrose pseudoinverse C†q,t of

Cq,t, we have that

‖û‖
Ass. 2.1(a)

≤ ‖C†q,t‖2CtA‖xq‖ =
1

σmin(Cq,t)
CtA‖xq‖

Def. 2.2(b)

≤ CtA‖xq‖√
λC

.(2.14)

As a result, from (2.11), we have that, for 1 ≤ j ≤ t− 1,

‖x̂q+j‖ ≤ CjA‖xq‖+M‖û‖ ≤
(
CjA +

M√
λC

CtA

)
‖xq‖.(2.15)

Now we let ûk = 0 for k ≥ q + t. Then it follows that x̂k = 0 for k ≥ q + t. Also
note that (2.10) is a standard linear-quadratic regulator problem, and the optimal
value is given by xTq Kqxq [4]. As a result, we have that

xTq Kqxq = min
uk,xk

n2−1∑
k=q

xTkQkxk + uTk R̂kuk + xTn2
Qn2xn2

≤
n2−1∑
k=q

x̂TkQkx̂k + ûTk R̂kûk + x̂Tn2
Qn2

x̂n2

≤
q+t−1∑
k=q

x̂TkQkx̂k + ûTk R̂kûk

≤ CQ

q+t−1∑
k=q

‖x̂k‖2 + CR

q+t−1∑
k=q

‖ûk‖2

(2.14),(2.15)

≤ CQ

(
1 +

t−1∑
i=1

(
CiA +

M√
λC

CtA

)2
)
‖xq‖2 + CR

C2t
A

λC
‖xq‖2.

Note that the minimum above is also subject to the dynamics constraints (2.10b).
Letting

β = CQ

(
1 +

t−1∑
i=1

(
CiA +

M√
λC

CtA

)2
)

+ CR
C2t
A

λC

completes the proof. Note that β only depends on the quantities in Definition 2.2
and Assumption 2.1, which are independent of n1, n2, and the particular choice of I
given it is UCC(λC , t).

In the following, we prove that the closed-loop system is asymptotically stable
with an exponential decay rate. While the asymptotic result is well known, we need
bounds on the decay rate at any time index; this is what we prove below. The proof
is motivated by [23].

Proposition 2.8. Under Assumption 2.1, if the index set I is UCC(λC , t), then
for any q ≤ j ≤ n2 − 1 we have that∥∥∥∥∥∥

j∏
l=q

Dl

∥∥∥∥∥∥
2

≤ C1ρ
j−q+1,

where C1 =
√
β/λQ, ρ = 1/

√
1 + (λQ/β), and C1, ρ are independent of n1, n2, and

the particular choice of I.
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Proof. It is shown in [4] that the recursion (2.7b) is equivalent to

Kk = Dk
TKk+1Dk +Qk + Lk

T R̂kLk.(2.16)

For q ≤ j ≤ n2 − 1, define xj+1 = Djxj . Note that in this proof, xj is a synthetic
sequence, and not the solution of the problems (2.1) or (2.3). Therefore the properties
of xj defined here do not necessarily reflect those of the solution sequence. Then (2.16)
and Proposition 2.7 imply that

xTj Kjxj ≥ xTj+1Kj+1xj+1 + xTj Qjxj

≥ xTj+1Kj+1xj+1 +
λQ
β
xTj Kjxj

≥
(

1 +
λQ
β

)
xTj+1Kj+1xj+1.

(2.17)

Here we used the bounds from Assumption 2.1 and the fact that

xTj Kjxj ≥ xTj+1Kj+1xj+1,

as implied by (2.16) and the positive definiteness of Qk, R̂k. Also we have that

xTj Kjxj ≥ xTj Qjxj ≥ λQ‖xj‖2.(2.18)

As a result, for n2 − 1 ≥ j ≥ q, we have the following:∥∥∥∥∥∥
j∏
l=q

Dlxq

∥∥∥∥∥∥
2

= ‖xj+1‖2
(2.18)

≤ 1

λQ
xTj+1Kj+1xj+1

(2.17)

≤ 1

λQ(1 + λQ/β)
xTj Kjxj

(2.17)

≤ 1

λQ

(
1

1 + λQ/β

)j−q+1

xTq Kqxq

Prop. 2.7

≤ β

λQ

(
1

1 + λQ/β

)j−q+1

‖xq‖2,

where the third inequality is obtained by repeatedly applying (2.17).

We have the following uniform boundedness result of matrices frequently used in
the rest of this section.

Lemma 2.9. Under Assumption 2.1, if the index set I is UCC(λC , t), then for
any n1 ≤ k ≤ n2 − 1 we have that

‖Ek‖2 ≤ CE , ‖Lk‖2 ≤ CL, ‖fk‖2 ≤ l0

for some CE, CL, and l0 independent of n1, n2, and the particular choice of I. Here
Ek is defined in Definition 2.5, Lk in (2.7d), and fk in (2.4).

Proof. See Appendix A.3.

Next, we investigate properties of the optimal states x∗k and controls u∗k for prob-
lem (2.3). Due to the one-to-one correspondence between solutions of problems (2.3)
and (2.5), we first consider the optimal states of (2.5) obtained in Proposition 2.6.
We have the following lemma characterizing the dependence of x∗k on di and fi.
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Lemma 2.10. Let Cki and F ki be defined as in Proposition 2.6. Under Assump-
tion 2.1, if the index set I is UCC(λC , t), we have that

‖Cki ‖2 ≤ C2ρ
|i−k|, ‖F ki ‖2 ≤ CF ρ|i−k|

for some C2, CF > 0 independent of n1, n2, and the particular choice of I. Here
ρ = 1/

√
1 + (λQ/β) as in Proposition 2.8.

Proof. See Appendix A.4.

Proposition 2.8 and Lemma 2.10 establish the exponential decay properties with
respect to |k − n1| and |i − k| for matrices

∏k−1
i=n1

Di and Cki , which encode the
dependencies of the optimal states x∗k of problem (2.5) on the initial value and the
reference di, respectively, by Proposition 2.6. This property is the key to proving
the following main result of this section. Proposition 2.11 bounds the dependence of
solutions x∗k, u∗k on the initial value xn1

and terminal reference dn2
with an exponential

term. The importance of this result is shown in section 3 when we investigate the
sensitivity of problem (2.1) to the initial value and terminal reference.

Proposition 2.11. Let x∗k and u∗k be the optimal states and controls of problem
(2.3). Under Assumption 2.1, if the index set I is UCC(λC , t), then we have that

‖∇xn1
x∗k‖2 ≤ Z1ρ

k−n1 , ‖∇dn2
x∗k‖2 ≤ Z2ρ

n2−k, n1 + 1 ≤ k ≤ n2,

‖∇xn1
u∗k‖2 ≤ Z1ρ

k−n1 , ‖∇dn2
u∗k‖2 ≤ Z2ρ

n2−k, n1 ≤ k ≤ n2 − 1,

for some Z1, Z2 > 0 independent of n1, n2, and the particular choice of I.

Proof. Due to the change of variable (2.4), the optimal states of problems (2.3)
and (2.5) are the same, and the unconstrained parts of the optimal controls differ by
a constant sequence. As a result, Proposition 2.6 and the optimal control law (2.6)
give the following:

∥∥∇xn1
x∗k
∥∥

2
=

∥∥∥∥∥
k−1∏
i=n1

Di

∥∥∥∥∥
2

Prop. 2.8

≤ C1ρ
k−n1 ,

∥∥∇dn2
x∗k
∥∥

2
=
∥∥Ckn2

∥∥
2

Lem. 2.10
≤ C2ρ

n2−k,∥∥∇xn1
u∗k
∥∥

2
=
∥∥∇xn1

v∗k
∥∥

2

(2.6)
= ‖Lk∇xn1

x∗k‖2
Lem. 2.9
≤ CL

∥∥∇xn1
x∗k
∥∥

2
≤ CLC1ρ

k−n1 ,

∥∥∇dn2
u∗k
∥∥

2
=
∥∥∇dn2

v∗k
∥∥

2

(2.6)

≤ CL
∥∥∇dn2

x∗k
∥∥

2
+

∥∥∥∥∥∥W−1
k B̂Tk

(
n2−1∏
l=k+1

Dl

)T
Qn2

∥∥∥∥∥∥
2

Prop. 2.8

≤ CL
∥∥∇dn2

x∗k
∥∥

2
+
CQCB
λR

C1ρ
n2−k−1

≤ CLC2ρ
n2−k +

CQCB
λR

C1ρ
n2−k−1.

Writing Z1 = max (C1, C1CL) and Z2 = max (C2, CLC2 + CQCBC1/λRρ) completes
the proof.

The next result gives an uniform upper bound for the solutions of problem (2.3)
whose index set is UCC(λC , t). First, we make the following assumptions about the
size of the initial value x0

n1
and the reference trajectory.
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Assumption 2.12. For any n1, n2, and n1 ≤ q ≤ n2, we have that
(a) ‖x0

n1
‖2 ≤ u0 for some u0 > 0,

(b) ‖dq‖2 ≤ m0 for some m0 > 0.

Since the initial state is part of input to the system, we can reasonably assume
that the values are taken in some compact set. Note that the reference trajectory
models the demand in a PCM, which is our target application area. If we were to
analyze asymptotics of our problem as n2 →∞, uniformly bounded demand would be
a tenuous assumption (though, with peak population scenarios currently considered,
not impossible). The results here can be extended to polynomial increase of demand
(as it will be compensated by exponential decays with rate ρ). To simplify the algebra,
at this time we use Assumption 2.12(b), where the demand/reference trajectory is
uniformly bounded over time.

Lemma 2.13. Let x∗k and u∗k be the optimal states and controls of problem (2.3).
Under Assumptions 2.1 and 2.12, if the index set I is UCC(λC , t), we have that

‖x∗k‖2 ≤ Cg, n1 + 1 ≤ k ≤ n2; ‖u∗k‖2 ≤ Cu, n1 ≤ k ≤ n2 − 1

for some Cg, Cu > 0 independent of n1, n2, and the particular choice of I.

Proof. Note again that, for problems (2.3) and (2.5), the optimal states are
identical, and the unconstrained parts of the optimal controls satisfy the relation
v∗k = û∗k+R̂−1

k R̄k b̃k by (2.4). Consequently, Proposition 2.6 and Lemmas 2.9 and 2.10
give the following:

‖x∗k‖2 ≤ C1ρ
k−n1u0 +

n2∑
i=n1+1

C2ρ
|k−i|m0 +

n2−1∑
i=n1

CF ρ
|k−i|l0

≤ C1u0 + 2m0C2

∞∑
s=0

ρs + 2l0CF

∞∑
s=0

ρs

= C1u0 +
2(m0C2 + l0CF )

1− ρ
∆
= Cg,

where m0 and u0 are the bounds on the reference trajectory and initial state defined in
Assumption 2.12. Note that (2.7c) gives that ‖W−1

k ‖2 ≤ 1/λR. The optimal control
law (2.6) and Proposition 2.8 give the following:

‖u∗k‖2 ≤ ‖ũk‖2 + ‖û∗k‖2 = ‖b̃k‖2 + ‖v∗k − R̂−1
k R̄k b̃k‖2 ≤ ‖v∗k‖2 + ‖b̃k‖2 +

CR
λR
‖bk‖2

≤ CLCg +
CQCB
λR

n2∑
i=k+1

ρi−k−1m0 +
βCB
λR

n2−1∑
i=k+1

ρi−kl0 +
βCB
λR

l0

+

(
2 +

CR
λR

)
U

≤ CLCg +
m0CQCB
λR(1− ρ)

+
l0βCB

λR(1− ρ)
+

(
2 +

CR
λR

)
U

∆
= Cu.

This completes the proof.

2.2. Box constrained control inequality problem. For the rest of this sec-
tion, we return to the inequality constrained problem (2.1) and investigate properties
of its solutions and Lagrange multipliers using the results derived for problem (2.3).
We make the following assumption about the active set A of problem (2.1).
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Assumption 2.14. The active set A of problem (2.1) is UCC(λC , t) as defined in
Definition 2.2(b).

Corollary 2.15. Let x∗k and u∗k be the optimal states and controls of problem
(2.1). Under Assumptions 2.1, 2.12, and 2.14, we have that

‖x∗k‖2 ≤ Cg, n1 + 1 ≤ k ≤ n2; ‖u∗k‖2 ≤ Cu, n1 ≤ k ≤ n2 − 1

for Cg, Cu > 0 as in Lemma 2.13.

Proof. Note that when the index set defining the equality constrained problem
(2.3) is the active set A of problem (2.1), problems (2.1) and (2.3) have the same
solution. Since A is UCC(λC , t), Lemma 2.13 gives the conclusion.

In the following, for problem (2.1), we investigate the adjoint variables which are
the Lagrange multipliers associated with the constraints xk+1 = Akxk +Bkuk.

Proposition 2.16. Let x∗k, u∗k be the solutions and φ∗k be the optimal adjoint
variables for problem (2.1). For n1 ≤ k ≤ n2 − 1, we have that

φ∗k = 2Kk+1x
∗
k+1 − 2

n2∑
i=k+1

(
Mk+1
i

)T
di − 2

n2−1∑
i=k+1

(
Sk+1
i

)T
fi,(2.19)

where Kk, Mk
i , Ski , and fi are defined with respect to the active constraints Cku

∗
k = b̄k

of problem (2.1) at optimality.

Proof. See Appendix A.5.

Lemma 2.17. Let φ∗k be the optimal adjoint variables for problem (2.1). Then
under Assumptions 2.1, 2.12, and 2.14, for n1 ≤ k ≤ n2 − 1, we have that

‖φ∗k‖ ≤ Cφ

for some Cφ > 0 independent of n1 and n2.

Proof. See Appendix A.6.

3. A temporal decomposition approach. In this section, we define a tem-
poral decomposition approach to approximate the solutions and optimal values of
problem (2.1). To partition the entire horizon, we decompose [n1, n2] into n0 subin-
tervals of the same length p = (n2 − n1)/n0. Denote the subintervals as

Si = [n1 + (i− 1)p, n1 + ip] , i = 1, . . . , n0.(3.1)

For some buffer size 0 < Ω < p, define an embedding region Fi for each Si as Fi =
[n′1(i), n′2(i)], where

n′1(i) =

{
n1, i = 1,

n1 + (i− 1)p− Ω, i = 2, . . . , n0,

n′2(i) =

{
n1 + ip+ Ω, i = 1, . . . , n0 − 1,

n2, i = n0.

(3.2)

Note that Si ⊂ Fi for i = 1, . . . , n0. Figure 1.1 shows an illustration of such a
decomposition scheme when n0 = 3. We define the following parametrized problem.



2554 WANTING XU AND MIHAI ANITESCU

Definition 3.1. For i = 1, . . . , n0, let θ = (θ(h), θ(d)). We define the parametr-
ized problem P iθ as follows:

min
wn′1(i):n′2(i)−1,hn′1(i):n′2(i)

n′2(i)−1∑
k=n′1(i)

wTk Rkwk + (hk − dk)TQk(hk − dk)(3.3a)

+(hn′2(i) − dn′2(i))
TQn′2(i)(hn′2(i) − dn′2(i))(3.3b)

s.t. hk+1 = Akhk +Bkwk, n′1(i) ≤ k ≤ n′2(i)− 1,(3.3c)

lk ≤ wk ≤ bk, n′1(i) ≤ k ≤ n′2(i)− 1,(3.3d)

hn′1(i) = θ(h), dn′2(i) = θ(d),(3.3e)

where dn′1(i):n′2(i)−1 are the same as those in problem (2.1).

Note that problem P iθ is problem (2.1) defined on a shorter interval Fi, but with
a possibly different terminal reference vector θ(d) and initial state θ(h) = h0

n′1(i). For

the latter, we invoke an assumption similar to Assumption 2.12.

Assumption 3.2. For i = 1, . . . , n0, let h0
n′1(i) be the initial value of problem P iθ ,

then ‖h0
n′1(i)‖2 ≤ u0, where u0 is the same as that in Assumption 2.12.

Let θ0(i) = (h0
n′1(i), dn′2(i)), where h0

n′1(i) is any initial value satisfying Assump-

tion 3.2 and h0
n′1(1) = x0

n1
, and where dn′2(i) is the reference in problem (2.1). Let

x∗n1+1:n2
, u∗n1:n2−1 be the optimal states and controls of problem (2.1), respectively,

and let h∗Fi and w∗Fi be the optimal states and controls of problem P iθ0(i). Define

J
(
[m1,m2], [n1, n2], x0

n1

) ∆
=

m2−1∑
k=m1

u∗k
TRku

∗
k + (x∗k − dk)TQk(x∗k − dk)

+ (x∗n2
− dn2)TQn2(x∗n2

− dn2)1(m2=n2),

(3.4)

where x∗m1:m2−1 and u∗m1:m2−1 are respectively the optimal states and controls of
problem (2.1) on [n1, n2] with initial value x0

n1
restricted to [m1,m2] ⊂ [n1, n2]. Then

the temporal decomposition approach consists of the approximation

J
(
[n1, n2], [n1, n2], x0

n1

)
= Γn1:n2

(
u∗n1:n2−1, x

∗
n1:n2

)
by
∑n0

i=1 J(Si, Fi, h
0
n′1(i)).

In other words, the optimal value of problem (2.1) is approximated by solving
problem P iθ0(i) on each embedding region Fi and summing over the solutions restricted

on the subintervals Si ⊂ Fi. On the target intervals Si, solving P iθ0(i) results in the
states h∗Si and controls w∗Si . To bound the error of this approximation, we need to

relate the solution of P iθ0(i) to the solution of (2.1) when solved on the full horizon.
To this end we define a modified problem on the embedding horizon Fi, whose

solution vector is the same as the restriction to Fi of the solution of (2.1) for the full
horizon [n1, n2]. The modified problem is also an instance of (3.3), but its solution
vector will be precisely the solution of (2.1) restricted to Fi. We have the following
result.
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Proposition 3.3. Let (u∗n1:n2−1, x
∗
n1+1:n2

) be the solutions and φ∗k be the adjoint
variables of problem (2.1). For i = 1, . . . , n0, define

ĥn′1(i) =

{
x0
n1
, i = 1,

x∗n′1(i), i = 2, . . . , n0,

d̂n′2(i) =

{
−Q−1

n′2(i)φ
∗
n′2(i)−1/2 + x∗n′2(i), i = 1, . . . , n0 − 1,

dn2 , i = n0.

(3.5)

Then (u∗n′1(i):n′2(i)−1, x
∗
n′1(i)+1:n′2(i)) satisfies the KKT conditions and the second-order

sufficient conditions of problem P iθ1(i) with θ1(i) = (ĥn′1(i), d̂n′2(i)).

Proof. For k = n1, . . . , n2 − 1, let Cku
∗
k = b̄k be the active box constraints for

problem (2.1) at optimality and let λ∗k be the associated optimal Lagrange multipliers.
The KKT conditions for problem (2.1) are

2Rku
∗
k − CTk λ∗k +BTk φ

∗
k = 0, n1 ≤ k ≤ n2 − 1,(3.6a)

2Qk(x∗k − dk) +ATk φ
∗
k − φ∗k−1 = 0, n1 + 1 ≤ k ≤ n2 − 1,(3.6b)

2Qn2
(x∗n2

− dn2
)− φ∗n2−1 = 0,(3.6c)

x∗k+1 = Akx
∗
k +Bku

∗
k, n1 ≤ k ≤ n2 − 1, xn1

= x0
n1
,(3.6d)

lk ≤ u∗k ≤ bk, n1 ≤ k ≤ n2 − 1,(3.6e)

λ∗k ≥ 0, n1 ≤ k ≤ n2 − 1.(3.6f)

Then for problem P iθ1(i) with parameters ĥn′1(i) and d̂n′2(i) defined in (3.5), the KKT

conditions are satisfied by the same solutions (u∗n′1(i):n′2(i)−1, x
∗
n′1(i)+1:n′2(i)) with the

same Lagrange multipliers λ∗k, φ∗k as follows:

2Rku
∗
k − CTk λ∗k +BTk φ

∗
k = 0, n′1(i) ≤ k ≤ n′2(i)− 1,(3.7a)

2Qk(x∗k − dk) +ATk φ
∗
k − φ∗k−1 = 0, n′1(i) + 1 ≤ k ≤ n′2(i)− 1,(3.7b)

2Qn′2(i)(x
∗
n′2(i) − d̂n′2(i))− φ∗n′2(i)−1 = 0,(3.7c)

x∗k+1 = Akx
∗
k +Bku

∗
k, n′1(i) ≤ k ≤ n′2(i)− 1, xn′1(i) = ĥn′1(i),(3.7d)

lk ≤ u∗k ≤ bk, n′1(i) ≤ k ≤ n′2(i)− 1,(3.7e)

λ∗k ≥ 0, n′1(i) ≤ k ≤ n′2(i)− 1,(3.7f)

where (3.7a)–(3.7b) and (3.7e)–(3.7f) directly follow from (3.6a)–(3.6b) and (3.6e)–

(3.6f), respectively. Equations (3.7c) and (3.7d) follow from the definitions of ĥn′1(i)

and d̂n′2(i), respectively. The second-order condition is satisfied by virtue of the strong
convexity of the problem.

Proposition 3.3 indicates that, in order for problem P iθ to have the same solutions
as problem (2.1) on Fi, the modified parameters (3.5) need to incorporate information
from (2.1) about the adjoint variables φ∗n′2(i)−1, and about the states x∗n′1(i), x

∗
n′2(i). We

note that problem P iθ1(i) defined in Proposition 3.3 is only theoretically meaningful,

since it cannot be set up without having solved the full horizon [n1, n2] problem.
However, the solution vector of P iθ1(i) is identical to that of the full horizon problem

restricted to Fi. In the following, we will prove that the solution of problem P iθ1(i),

on the subinterval Si, is sufficiently close to that of P iθ0(i). The latter problem is
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computable by using the reference trajectory corresponding only to the short interval
Fi. Note that problem P iθ1(i) can be viewed as the result of perturbing the parameter

of problem P iθ0(i). Therefore, to prove the relationship between the solutions of P iθ0(i)

and P iθ1(i) , we use the parametric sensitivity results derived from [6]. We note that

our base problem (2.1) is a quadratic program, for which several results concerning
the Lipschitz continuity with respect to parameters exist [6, 14]. Our aim, however,
concerns more specific elements of the solution and seeks stronger results than directly
using [6, 14] would allow. We aim to show that the entries corresponding to a subset
of the solution vector components (the ones corresponding to the subintervals Si in
Figure 1.1) are Lipschitz continuous with respect to the initial state and terminal
reference on the embedding regions Fi, but with a Lipschitz constant L that decays
exponentially in the buffer size Ω. To achieve such an objective, we compute the
directional derivative of the target components with respect to the perturbations,
using results from [6], and then show that its value can be upper bounded using
results such as Proposition 2.11. In turn, this gives the sought-after exponential
decay result.

Definition 3.4. For θ ∈ Rq, define the one-sided directional derivative of y(θ)
along a direction p ∈ Rq at θ0 as

Dpy(θ0) = lim
t↓0

y(θ0 + tp)− y(θ0)

t
,

given that the limit exists.

Lemma 3.5. Consider the parametrized quadratic programming problem

min f(y, θ)
∆
= yTGy/2 + yT c(θ) + θTFθ + yT c1 + θT c2 + C

s.t. Ay − r ≤ 0,

By − d(θ) = 0,

(3.8)

where G, F are positive definite, θ ∈ Rq and AT = [a1, . . . , am] ∈ Rn×m. Denote the
solution of problem (3.8) by y(θ). When θ = θ0, let y0 = y(θ0) and let the Lagrange
multiplier corresponding to y0 be λ̄. Denote I(y0, θ0) = {i : aTi y0 = ri, i = 1, . . . ,m}
be the set of active inequality constraints, I+(y0, θ0, λ̄) = {i ∈ I(y0, θ0) : λ̄i > 0}
and I0(y0, θ0, λ̄) = {i ∈ I(y0, θ0) : λ̄i = 0}. If the linear independence constraint
qualification (LICQ) holds at y(θ0), then for any p ∈ Rq we have that

Dpy(θ0) =

(
dy∗I′(θ0)(θ)

dθ

∣∣∣∣∣
θ=θ0

)
p,

where y∗I′(θ0)(θ) is the solution of the problem

min f(y, θ) = yTGy/2 + yT c(θ) + θTFθ + yT c1 + θT c2 + C

s.t. AI′(θ0)y − r′ = 0,

By − d(θ) = 0,

(3.9)

and where I ′(θ0) = I+(y0, θ0, λ̄) ∪ I1 for some I1 ⊂ I0(y0, θ0, λ̄), and AI′(θ0) =
[aTi ]i∈I′(θ0), r

′ = [ri]i∈I′(θ0).

Proof. See Appendix A.7.
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With Lemma 3.5, we are now ready to investigate the effect on solutions of per-
turbing the parameters of problem P iθ . Since the proof for each subinterval is the
same, for notational simplicity we suppress the dependence of n′1(i), n′2(i), and P iθ on
i whenever the index of the subinterval under consideration is clear.

Proposition 3.6. Write θ0 = (h0
n′1
, dn′2) and θ1 = (ĥn′1 , d̂n′2), as defined in (3.5).

For θ = (θ(h), θ(d)), let y(θ) be the solution of problem Pθ. We then have, for s ∈ [0, 1],

Dθ1−θ0y (θ0 + s(θ1 − θ0)) =

(
dy∗s (θ)

dθ

∣∣∣
θ=θ0+s(θ1−θ0)

)
(θ1 − θ0),

and y∗s (θ) is the solution of the following equality constrained problem:

min
wn′1:n′2−1,hn′1:n′2

n′2−1∑
k=n′1

wTk Rkwk + (hk − dk)TQk(hk − dk)

+ (hn′2 − θ
(d)
s )TQn′2(hn′2 − θ

(d)
s )

s.t. hk+1 = Akhk +Bkwk, n′1 ≤ k ≤ n′2 − 1, hn′1 = θ(h)
s ,

Ck(s)wk = b̄k(s), n′1 ≤ k ≤ n′2 − 1,

(3.10)

where rows of Ck(s) and b̄k(s) are, respectively, subsets of rows of C ′k(s) and b̄′k(s),
which are the selection matrix and bound vector defined by (2.2) corresponding to the
active set of Pθs at optimality, and θs = θ0 +s(θ1−θ0). In other words, the equations
Ck(s)wk = b̄k(s) represent a subset of the active constraints of Pθs at optimality.

Proof. For any θ ∈ R2n, problem Pθ is an instance of problem (3.8) with the
following parameters:

G =



2Rn′1
. . .

2Rn′2−1

2Qn′1+1

. . .

2Qn′2


, F =

[
Qn′1

Qn′2

]
,

A =


I(n′2−n′1)m

02(n′2−n′1)m×(n′2−n′1)n

−I(n′2−n′1)m

 , r =



bn′1
...

bn′2−1

−ln′1
...

−ln′2−1


,

c(θ) =

[
0(n′2−n′1)m+(n′2−n′1−1)n

−2Qn′2θ
(d)

]
,

B =


−Bn′1 I

. . . −An′1+1 I
. . .

−Bn′2−1 −An′2−1 I

 , d(θ) =

[
An′1θ

(h)

0(n′2−n′1−1)n

]
.
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Here Ax ≤ r and Bx = d(θ) correspond respectively to the box constraints (3.3d) and
the system dynamics (3.3c). Note that A and B have the same number of columns. G
and F are positive definite from Assumption 2.1. Let Ā be the matrix whose rows are
subsets of rows of A corresponding to the active constraints of problem Pθ. Since an
active constraint can achieve either lower or upper bound, but not both, the rows of
Ā are linearly independent. Also, B has full row rank, and the rows of Ā are linearly
independent of rows of B. As a result, LICQ holds for any θ ∈ R2n at optimality. For
s ∈ [0, 1], directly applying Lemma 3.5 to problem Pθs gives the conclusion.

Proposition 3.6 relates the directional derivative of the solution of problem Pθs
with respect to the parameters θ to the solution of an equality constrained problem
(3.10). Note that problem (3.10) has the same form as problem (2.3) for which
we derive the exponential decay result Proposition 2.11 under some controllability
conditions. Now we make similar controllability assumptions for the problems Pθs .

Assumption 3.7. For i = 1, . . . , n0 and any s ∈ [0, 1], let θ0(i) = (h0
n′1(i), dn′2(i)),

θ1(i) = (ĥn′1(i), d̂n′2(i)) as defined in (3.5), and θs(i) = θ0(i) + s(θ1(i)− θ0(i)); then the

active sets of problems P iθs(i) at optimality are UCC(λC , t).

Note that Assumption 3.7 assumes UCC(λC , t) for the active sets of the continu-
ously indexed family of problems P iθs(i) on each embedding region Fi, which is stronger

than Assumption 2.14 for problem (2.1). We note, however, that Assumption 3.7 is
only made for the active sets at optimality.

Lemma 3.8. Under Assumption 3.7, the index set for problem (3.10) is UCC(λC , t)
for any s ∈ [0, 1] and i = 1, . . . , n0.

Proof. Since the proof for each i = 1, . . . , n0 is the same, we suppress the depen-
dence on i in the proof. The index set Is, which we use in the definition of problem
(3.10) that we use to compute the directional derivative of the solution with respect
to the parameter θ, is a subset of the active set As for problem Pθs . As a result,
the columns of the controllability matrix Cq,t(As) are contained in those of Cq,t(Is).
Since λmin(Cq,t(As)CTq,t(As)) ≥ λC by Assumption 3.7, we have that

λmin(Cq,t(Is)CTq,t(Is)) ≥ λmin(Cq,t(As)CTq,t(As)) ≥ λC ,

and hence Is is also UCC(λC , t).

Together with Assumption 2.1, Lemma 3.8 justifies the application of the expo-
nential decay result Proposition 2.11 to problem (3.10), and hence, combined with
Proposition 3.6, it bounds the distance between solutions of Pθ0 and Pθ1 as follows.

Proposition 3.9. Let y(θ0) = (w∗n′1:n′2−1, h
∗
n′1+1:n′2

) be the solution of problem

Pθ0 and let y(θ1) = (u∗n′1:n′2−1, x
∗
n′1+1:n′2

) be the solution of problem Pθ1 . From Propo-

sition 3.3, y(θ1) is also the solution of problem (2.1) restricted to the embedding region
Fi. Under Assumptions 2.1, 2.12, 2.14, 3.2 and 3.7, for i = 1, . . . , n0 and k ∈ Si, we
have that

‖x∗k − h∗k‖2, ‖u∗k − w∗k‖2 ≤ Y ρΩ

for some Y > 0 independent of n1 and n2, where ρ is defined in Proposition 2.8 and
Ω is the buffer size as in (3.2).

Proof. From Leibniz–Newton, we have that

y(θ1)− y(θ0) =

∫ 1

0

Dθ1−θ0y (θ0 + s(θ1 − θ0)) ds,



TEMPORAL DECOMPOSITION FOR DYNAMIC OPTIMIZATION 2559

which gives that

x∗k − h∗k =

∫ 1

0

Dθ1−θ0 p̃
∗
k(θs) ds, u∗k − w∗k =

∫ 1

0

Dθ1−θ0 s̃
∗
k(θs) ds,(3.11)

where (s̃∗n′1:n′2−1(θs), p̃
∗
n′1+1:n′2

(θs)) is the solution of problem Pθs . Proposition 3.6

implies that

Dθ1−θ0 p̃
∗
k(θs) =

[
∇hn′1p

∗
k(θs) ∇dn′2p

∗
k(θs)

] [ĥn′1 − h0
n′1

d̂n′2 − dn′2

]
,

Dθ1−θ0 s̃
∗
k(θs) =

[
∇hn′1 s

∗
k(θs) ∇dn′2 s

∗
k(θs)

] [ĥn′1 − h0
n′1

d̂n′2 − dn′2

]
,

where (s∗n′1:n′2−1(θs), p
∗
n′1+1:n′2

(θs)) is the solution of the equality constrained problem

(3.10). Note that each Pθs may have a different active set, which may also be different
from that of problem (2.1). However, under Assumption 3.7, the active set of every
Pθs is UCC(λC , t), and Lemma 3.8 implies that the index set for the corresponding
problem (3.10) is UCC(λC , t) as well. In addition, the system parameters (e.g., Rk,
Qk, Ak, Bk) of problem (3.10) are bounded above by the corresponding quantities
under Assumption 2.1. As a result, problem (3.10) satisfies all the conditions of
Proposition 2.11, which can be applied to give that

‖∇hn′1p
∗
k(θs)‖2, ‖∇hn′1 s

∗
k(θs)‖2 ≤ Z1ρ

k−n′1 ,

‖∇dn′2p
∗
k(θs)‖2, ‖∇dn′2 s

∗
k(θs)‖2 ≤ Z2ρ

n′2−k.
(3.12)

Note that as given in Proposition 2.11, Z1, Z2, and ρ are independent of the problem
interval and the particular choice of the index set.

Assumptions 2.12 and 3.2 and Propositions 2.13 and 2.17 give that

‖ĥn′1 − h
0
n′1
‖2 ≤ Cg + u0, ‖d̂n′2 − dn′2‖2 ≤

Cφ
2λQ

+ Cg +m0,(3.13)

where u0 and m0 are defined in Assumptions 2.12 and 3.2. Combining (3.12) and
(3.13), we have, for k ∈ Si,

‖Dθ1−θ0 p̃
∗
k(θs)‖2 , ‖Dθ1−θ0 s̃

∗
k(θs)‖2

≤ Z1 (Cg + u0) ρk−n
′
1 + Z2

(
Cφ
2λQ

+ Cg +m0

)
ρn
′
2−k

≤
(
Z1 (Cg + u0) + Z2

(
Cφ
2λQ

+ Cg +m0

))
ρΩ.

Letting Y = Z1(Cg + u0) +Z2(
Cφ
2λQ

+Cg +m0) and combining with (3.11) completes

the proof.

Proposition 3.9 is our key result. It proves the main hypothesis of this paper that
solutions restricted to the subinterval Si of (2.1) formulated over the long horizon
[n1, n2] are exponentially close to the solutions restricted to the interval Si of the
problem P iθ0(i), which is set up and solved only on the embedding region Fi. The
exponent is proportional to Ω, the buffer size. Now we derive the following error
bound of the optimal values on each decomposition subinterval.
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Proposition 3.10. Under Assumptions 2.1, 2.12, 2.14, 3.2, and 3.7, we have∣∣∣J(Si, [n1, n2], x0
n1

)− J(Si, Fi, h
0
n′1(i))

∣∣∣ ≤ n2 − n1

n0
XρΩ

for some X > 0 independent of n1 and n2.

Proof. We let (w∗n′1:n′2−1, h
∗
n′1+1:n′2

) be the solution of problem P iθ0(i) and we let

(u∗n′1:n′2−1, x
∗
n′1+1:n′2

) be the solution of P iθ1(i), which, by Proposition 3.3, is also the

solution of problem (2.1) on Fi. Since the active set of problem P iθ0(i) at optimality

is UCC(λC , t) by Assumption 3.7, and the initial state is bounded by u0 from As-
sumption 3.2, Lemma 2.13 gives that, for j ∈ Si, ‖h∗j‖2 ≤ Cg, ‖w∗j ‖2 ≤ Cu. Then we
have ∣∣(x∗j − dj)TQj(x∗j − dj)− (h∗j − dj)TQj(h∗j − dj)

∣∣
≤
∣∣(x∗j − dj)TQj(x∗j − h∗j )∣∣+

∣∣(x∗j − h∗j )TQj(h∗j − dj)∣∣
≤ 2CQ(Cg +m0)‖x∗j − h∗j‖2

(3.14)

and ∣∣∣u∗j TRju∗j − w∗j TRjw∗j ∣∣∣
≤
∣∣(u∗j − w∗j )TRju

∗
j

∣∣+
∣∣∣w∗j TRj(u∗j − w∗j )

∣∣∣
≤ 2CRCu‖u∗j − w∗j ‖2.

(3.15)

Combining with Proposition 3.9, we have that∣∣∣J(Si, [n1, n2], x0
n1

)− J(Si, Fi, h
0
n′1(i))

∣∣∣
≤
∑
j∈Si

(∣∣(x∗j − dj)TQj(x∗j − dj)− (h∗j − dj)TQj(h∗j − dj)
∣∣

+
∣∣∣u∗j TRju∗j − w∗j TRjw∗j ∣∣∣

)
≤ 2

n2 − n1

n0
(CQ(Cg +m0) + CRCu)Y ρΩ.

Defining X = 2(CQ(Cg +m0) + CRCu)Y completes the proof.

Now we bound the total error of optimal values generated by the decomposition
approach.

Theorem 3.11. Under Assumptions 2.1, 2.12, 2.14, 3.2, and 3.7, we have that∣∣∣∣∣J([n1, n2], [n1, n2], x0
n1

)−
n0∑
i=1

J(Si, Fi, h
0
n′1(i))

∣∣∣∣∣ ≤ (n2 − n1)XρΩ,

where X > 0 is the same as in Proposition 3.10.



TEMPORAL DECOMPOSITION FOR DYNAMIC OPTIMIZATION 2561

Proof. Using Proposition 3.10, we have that∣∣∣∣∣J([n1, n2], [n1, n2], x0
n1

)−
n0∑
i=1

J(Si, Fi, h
0
n′1(i))

∣∣∣∣∣
≤

n0∑
i=1

∣∣∣J(Si, [n1, n2], x0
n1

)− J(Si, Fi, h
0
n′1(i))

∣∣∣
≤ n0

n2 − n1

n0
XρΩ

= (n2 − n1)XρΩ.

Theorem 3.11 upper bounds the total error induced by the decomposition ap-
proach by the product of an exponential term ρΩ and the length of the horizon
n2 − n1. The rate of decay is eventually dominated by the exponential term. The
exponential decay rate in the buffer size Ω enables the buffer regions to be chosen sig-
nificantly shorter than the entire horizon while producing reasonable approximations
under increasing horizon. Hence, when this approach is implemented in parallel, the
computation time can be significantly reduced with little compromise on accuracy.

We also note that the techniques developed in section 2, particularly Proposi-
tion 2.11, and in the first part of section 3 can be used beyond proving our main
result, Theorem 3.11. We believe they can be useful in other contexts, and in par-
ticular, in model predictive control. For example, it appears that one can show with
similar techniques that the trajectory obtained from a receding horizon control ap-
proach converges exponentially to the solution of the full horizon problem (1.1). For
instance, Proposition 3.9 can be applied to show that, if the short horizon problem
has length Ω, then the first optimal control vector un′1 and the second state vector
xn′1+1 are exponentially close in Ω to the corresponding elements of the solution of the
full horizon problem (1.1). Due to the space limit, we aim to develop this observation
in future research.

4. Numerical results. In this section, we apply the temporal decomposition
approach to a simplified production cost model in order to verify some of our theoret-
ical findings. We employ the estimated hourly demand data in the northern Illinois
region from year 2011 to 2015 provided by PJM Interconnection [15]. The model we
are considering is the following:

min
u1:N ,x1:N+1

N∑
k=1

c1(xk − dk)2 + c2x
2
k + u2

k(4.1a)

s.t. xk+1 = xk + uk,(4.1b)

− U ≤ uk ≤ U.(4.1c)

Here dk is the electricity demand to be satisfied on hour k, described by the data
from [15]. We assume this can be done by two fictitious generators: one with high
quadratic cost, with parameter c1 = 10, and one with low quadratic cost c2 = 5. The
cheaper generator has limited ability to change its output xk, which is modeled by
the box constraints (4.1c) (also called the ramp rate constraints [1]) combined with
the dynamics (4.1b). The more expensive generator is fast and can thus serve all
remaining load dk − xk. This situation models, for example, the situation in which
one has a cheap but slow coal plant and a fast but expensive gas plant. Here the
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control is uk, the amount of change at hour k of the generation level of the cheaper
generator. We note that the formulation has the form from (1.1).

To define the temporal decomposition approach described in section 3, we parti-
tion the hourly scale five-year horizon into weeks, resulting in n0 = 261 subintervals
S1, . . . , Sn0 . With buffer size Ω, we define the embedding regions F1, . . . , Fn0 as in
(3.2). In order to apply our decomposition approach, we need to specify the initial
state for the short horizon problems other than the earliest one, which uses the initial
value of the full horizon problem. In general, finding a good initial state is difficult.
In the case of the production cost models that motivated this research, however, the
demand, while random, is fairly stable [1] for the same time of the day in the week.
Moreover, optimal generation levels tend to be stable too, with a similar pattern [1].
Therefore, for production cost models, a good initial guess is readily available. For the
general dynamic optimization problem, such a good guess may not be available. On
the other hand, for a given policy of choosing it—for example, choosing the analytical
center of the feasible set—Proposition 3.9 can be used on test problems to determine
a good choice of the buffer size Ω that allows for the effect of the initial condition
policy to be small enough for the tolerance sought. The fact that Proposition 3.9
establishes exponential decay of the error with respect to the buffer size Ω allows such
trade-offs to be carried out. For our production cost model example, as the demand
pattern is relatively predictable, as also indicated in [1], a good guess does exist at
a given time of the day and week. As a consequence, we use as an initial state the
average demand at each hour of a day for all of 2011. At the initial time point n′1(i)
of Fi, we thus set the initial value x0

n′1(i) to the average demand for that hour. Denote

the optimal objective function value of problem (4.1) by J∗, namely,

J∗
∆
= J([1, N ], [1, N ], x0

1),

as defined in (3.4), and define

J∗i
∆
= J(Si, Fi, x

0
n′1(i))

for i = 1, . . . , n0. We solve both long and short horizon versions of (4.1) using the
Ipopt software [5]. The model was defined by using the Julia/JuMP interface [19].

We now analyze how well the sum of the computation on the short intervals, J∗i ,
approximates the long horizon problem, J∗. Figure 4.1 shows the relative approxima-
tion error |J∗−

∑n0

i=1 J
∗
i |/J∗ as a function of the buffer size (measured in hours) for an

increasing value of the ramping constraint bound U in (4.1c). For each U , the largest
buffer size we experiment with is the smallest value that results in a relative approxi-
mation error less than 10−5. The cost of such large-scale planning projects is usually
on the order of billions of dollars. A relative error on the order of 10−5 corresponds
to a discrepancy of less than a hundred thousand dollars, which is already well within
the tolerance level of planning. We observe from Figure 4.1 that for all values of U
the relative error decreases exponentially with Ω, which is the conclusion of our main
result, Theorem 3.11. We conclude that Figure 4.1 validates the exponential decay
of the approximation error of temporal decomposition with respect to the buffer size
as proved in Theorem 3.11. We note that the target accuracy is achieved by buffer
regions of less than 24 hours for all bounds U , although for different and larger PCM
the results could be different. The order of magnitude of the buffer for which such
accuracy is achieved is, however, of the same order—days—as in [1].

Figure 4.1 also shows that the decay rate of the approximation error increases
with increasing bound U of controls. Note that the error bound in Theorem 3.11
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Table 4.1
Longest period t (hour) for which the optimal controls of problem (4.1) are on the bound.

U 100 200 300 400 500 600 700 800 900 1000

t 91 62 48 34 14 12 10 8 7 5

Fig. 4.1. Relative error in approximation
|J∗ −

∑n0
i=1 J∗i |/J∗ at each buffer size (hour)

for U = 200, 400, 600, 800, 1000.

Fig. 4.2. Proportions of optimal controls
of problem (4.1) that are on the bound for U =
100, . . . , 1000.

depends on the controllability of problem (4.1) at optimality. We thus investigate
numerically the longest period t for which the problem (4.1) is not controllable; t as
used here carries the same meaning as in Definition 2.2. Since problem (4.1) is one
dimensional, from Definition 2.2, it follows that t is simply the longest contiguous
period for which the optimal controls are on the bound. Table 4.1 shows t in hours
for different choices of the bound U . The longest period of uncontrollability decreases
as the bound becomes larger. Figure 4.2 shows the proportions of optimal controls of
problem (4.1) that are on the bound for increasing U . When U = 100, more than 85%
of the optimal controls attain the bound, which approaches the controllability limit of
the problem. Even for this tightest bound U = 100, however, the value of t is 91, which
is about three to four days. This bound is certainly covered by our weekly partitioned
subintervals and thus ensures that the controllability Assumption 2.14 holds on each
embedding region Fi. Therefore the conditions of our main result Theorem 3.11 are
satisfied.

5. Conclusions. Temporal decompositions are useful techniques for exposing
parallelism in dynamic optimization problems. Such approaches are particularly use-
ful for production cost simulations in electricity planning problems, where the cal-
culations can have hundreds of thousands of time periods. The version of temporal
decomposition discussed in this work approximates the solution over the entire hori-
zon by the one obtained by patching the solution from multiple dynamic optimization
problems with much shorter, overlapping, horizons initialized at some guess of the
state. In turn, this transforms a sequential problem into one that is immediately
amenable to parallel computing, thus massively reducing the time to solution. While
used to great effect in [1], such temporal decomposition approaches were, up to our
work, heuristic with no theoretical basis for their good approximating behavior.

In this work we prove that for the class of linear-quadratic dynamic optimization
problems the temporal decomposition with overlap approaches the solution of the
original problem exponentially fast in the size of the overlap. This approach partitions
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the entire horizon into subintervals and embeds each subinterval into the interval of
interest plus a buffer region. The objective cost and, respectively, the solution on the
entire horizon are then approximated by the the sum of the costs on each subinterval
and, respectively, the solutions obtained from solving the corresponding problem on
its embedding region. We prove that under some boundedness and controllability
assumptions the approximation errors in both the solution and objective function
decrease exponentially as a function of the buffer size. The exponential decay rate
enables one to choose embedding regions much shorter than the length of the horizon,
and since problems on each buffer region can be solved independently the time to
solution is significantly reduced when the approach is implemented in parallel.

We validate our theoretical findings by using a numerical experiment that mimics
a production cost evaluation over a five-year interval with hourly time periods and
real data but with a simple, two-generator model. For all the cases, the relative error
in the approximation of the objective function decreases exponentially with the buffer
size. The decay rate decreases as more optimal controls attain the bound. In other
words, the decay is slower when the system stays uncontrollable for longer periods.
For this small experiment, even with the tightest bound on the controls and more
than 85% of the optimal controls attaining the bounds, the buffer size needed for
the relative error to be less than 10−5 is less than 24 periods—one day. Since the
decomposed horizons have length only slightly more than one week, little extra effort
has been added to solving problems when compared with the problem for the useful
interval only, the one-week inner temporal region.

The class of dynamic optimization problems considered here is simplified when
compared with [1] in that it is a linear-quadratic dynamic optimization problem with
box control constraints. While our problem class does not include the complicating
features of linear objective, integer variables, and path constraints, it includes the
intertemporal constraints that make the analysis of error difficult. Consequently, our
approach gives analytical support for the rapid convergence of the temporal decom-
position with overlapping intervals. Future work will address extending the results for
these complicating features as well as applying the techniques of this paper to model
predictive control.

Appendix A. Proofs of results in sections 2 and 3.

A.1. Proof of Proposition 2.4. With dynamic programming, the “cost-to-go”
value functions for a problem started at k with state xk, Jk(xk), satisfy

Jn2
(xn2

) = (xn2
− dn2

)TQn2
(xn2

− dn2
),

Jk(xk) = min
vk

(xk − dk)TQk(xk − dk) + vTk R̂kvk + Jk+1(Akxk + B̂kvk + fk)

for n1 ≤ k ≤ n2 − 1. We claim that

(A.1) Jk(xk) = xTkKkxk − 2

n2∑
i=k

dTi M
k
i xk − 2

n2−1∑
i=k

fTi S
k
i xk + Tk, n1 ≤ k ≤ n2,

where Tk is some constant matrix.
Now we prove (A.1) by reverse induction and show that (2.6) holds whenever

(A.1) holds at k + 1. When k = n2, (A.1) holds with Kn2 = Qn2 by definition.
Suppose (A.1) holds for Jk+1(xk+1) for some n1 ≤ k ≤ n2 − 1. Then, replacing the
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induction hypothesis formula in the cost-to-go function, we obtain

Jk(xk) = min
vk

{
vTkWkvk + 2rTk vk

}
+ xTk

(
ATkKk+1Ak +Qk

)
xk

− 2

n2∑
i=k+1

dTi M
k+1
i Akxk − 2dTkQkxk

− 2

n2−1∑
i=k+1

fTi S
k+1
i Akxk + 2fTk Kk+1Akxk + Tk,

where

Wk = R̂k + B̂Tk Kk+1B̂k,

rTk = xTkA
T
kKk+1B̂k −

n2∑
i=k+1

dTi M
k+1
i B̂k −

n2−1∑
i=k+1

fTi S
k+1
i B̂k + fTk Kk+1B̂k.

The optimal control law, which is the solution of the preceding optimization
problem, is hence

v∗k(xk) = −W−1
k rk

= Lkxk +W−1
k

n2∑
i=k+1

B̂Tk
(
Mk+1
i

)T
di +W−1

k

n2−1∑
i=k+1

B̂Tk
(
Sk+1
i

)T
fi

−W−1
k B̂kKk+1fk.

Therefore (2.6) holds true at k.
Substituting v∗k = −W−1

k rk, we obtain that v∗k
TWkv

∗
k + 2rTk v

∗
k = −rTkW

−1
k rk. As

a result,

Jk(xk) = −rTkW−1
k rk + xTk

(
ATkKk+1Ak +Qk

)
xk

− 2

n2∑
i=k+1

dTi M
k+1
i Akxk − 2dTkQkxk

− 2

n2−1∑
i=k+1

fTi S
k+1
i Akxk + 2fTk Kk+1Akxk + Tk.

(A.2)

Substituting the expression of rk defined in (A.1), we have that, up to a constant
term,

− rTkW−1
k rk + xTk

(
ATkKk+1Ak +Qk

)
xk

= xTk

(
ATk (Kk+1 −Kk+1B̂kW

−1
k B̂Tk Kk+1)Ak +Qk

)
xk

+ 2

(
n2∑

i=k+1

dTi M
k+1
i B̂k +

n2−1∑
i=k+1

fTi S
k+1
i B̂k − fTk Kk+1B̂k

)
W−1
k B̂kKk+1Akxk

= xTkKkxk − 2

n2∑
i=k+1

dTi M
k+1
i B̂kLkxk − 2

n2−1∑
i=k+1

fTi S
k+1
i B̂kLkxk + 2fTk Kk+1B̂kLkxk,

(A.3)
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by (2.7b) and (2.7d). Now we substitute (A.3) back into (A.2) and have that

Jk(xk) = xTkKkxk − 2

n2∑
i=k+1

dTi M
k+1
i B̂kLkxk

− 2

n2−1∑
i=k+1

fTi S
k+1
i B̂kLkxk + 2fTk Kk+1B̂kLkxk

− 2

n2∑
i=k+1

dTi M
k+1
i Akxk − 2dTkQkxk

− 2

n2−1∑
i=k+1

fTi S
k+1
i Akxk + 2fTk Kk+1Akxk + Tk

(2.7e)
= xTkKkxk − 2

n2∑
i=k+1

dTi M
k+1
i Dkxk − 2dTkQkxk

− 2

n2−1∑
i=k+1

fTi S
k+1
i Dkxk + 2fTk Kk+1Dkxk + Tk

= xTkKkxk − 2

n2∑
i=k

dTi M
k
i xk − 2

n2−1∑
i=k

fTi S
k
i xk + Tk,

by (2.7f) and (2.7g). This proves the induction hypothesis at (A.1) at step k. Since
we proved above that (2.6) holds true at k, this completes the induction step and
proves that both (A.1) and (2.6) hold for all k.

A.2. Proof of Proposition 2.6. The recursion (2.5c) and optimal control law
(2.6) imply that x∗k has the form of (2.8) for some Cki and F ki . When k = n1 + 1, we
have that

x∗n1+1 = An1
xn1

+ B̂n1
v∗n1

+ fn1

= Dn1
xn1

+ En1

n2∑
i=n1+1

(
Mn1+1
i

)T
di

+ En1

n2−1∑
i=n1

(
Sn1+1
i

)T
fi − En1Kn1+1fn1 + fn1 .

(A.4)

Applying recursion (2.5c) and the optimal control law (2.6) gives

x∗k+1 =

(
k∏

i=n1

Di

)
xn1

+

n2∑
i=n1+1

DkC
k
i di +

n2−1∑
i=n1

DkF
k
i fi

+Ek

n2∑
i=k+1

(
Mk+1
i

)T
di + Ek

n2−1∑
i=k+1

(
Sk+1
i

)T
fi − EkKk+1fk + fk.

Combining with (A.4), we obtain the recursions

Ck+1
i =

{
DkC

k
i , n1 + 1 ≤ i ≤ k,

DkC
k
i + Ek

(
Mk+1
i

)T
, k + 1 ≤ i ≤ n2,

Cn1+1
i = En1

(
Mn1+1
i

)T
, n1 + 1 ≤ i ≤ n2,

(A.5)
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and

F k+1
i =


DkF

k
i , n1 ≤ i ≤ k − 1,

DkF
k
i − EkKk+1 + I, i = k,

DkF
k
i + Ek

(
Sk+1
i

)T
, k + 1 ≤ i ≤ n2 − 1,

Fn1+1
i =

{
En1

(
Sn1+1
i

)T
, n1 + 1 ≤ i ≤ n2 − 1,

−En1
Kn1+1 + I, i = n1.

(A.6)

Now we prove that Cki and F ki defined in (2.9) satisfy the recursions (A.5) and (A.6),
respectively.

(a) Proof that Cki defined in (2.9) satisfies (A.5).
When k = n1 + 1, since i ≥ n1 + 1, we have that

Cn1+1
i =

n1∑
s=n1

(
n1∏

l=s+1

Dl

)
Es
(
Ms+1
i

)T
= En1

(
Mn1+1
i

)T
,

which satisfies (A.5).
When k > n1 + 1, if i ≤ k, then i ≤ k + 1, and then we have that

Ck+1
i =

i−1∑
s=n1

(
k∏

l=s+1

Dl

)
Es
(
Ms+1
i

)T
= Dk

i−1∑
s=n1

(
k−1∏
l=s+1

Dl

)
Es
(
Ms+1
i

)T
= DkC

k
i ,

and if i ≥ k + 1, then i ≥ k, so it follows that

Ck+1
i =

k∑
s=n1

(
k∏

l=s+1

Dl

)
Es
(
Ms+1
i

)T
= Dk

k−1∑
s=n1

(
k−1∏
l=s+1

Dl

)
Es
(
Ms+1
i

)T
+ Ek

(
Mk+1
i

)T
= DkC

k
i + Ek

(
Mk+1
i

)T
,

which both satisfy (A.5).
(b) Proof that F ki defined in (2.9) satisfies (A.6).

When k = n1 + 1, if i = n1, we have from (2.9) that

Fn1+1
n1

= I − En1
Kn1+1,

and if i ≥ n1 + 1 = k, it follows that

Fn1+1
i =

n1∑
s=n1

(
n1∏

l=s+1

Dl

)
Es
(
Ss+1
i

)T
= En1

(
Sn1+1
i

)T
,

which satisfies (A.6).
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When k > n1 + 1, if i ≤ k − 1, then i ≤ k ≤ k + 1, and then we have that

F k+1
i =

i−1∑
s=n1

(
k∏

l=s+1

Dl

)
Es
(
Ss+1
i

)T
+

(
k∏

l=i+1

Dl

)
(I − EiKi+1)

= Dk

(
i−1∑
s=n1

(
k−1∏
l=s+1

Dl

)
Es
(
Ss+1
i

)T
+

(
k−1∏
l=i+1

Dl

)
(I − EiKi+1)

)
= DkF

k
i .

If i = k, then k + 1 ≥ i+ 1, and hence

F k+1
i =

i−1∑
s=n1

(
k∏

l=s+1

Dl

)
Es
(
Ss+1
i

)T
+ (I − EiKi+1)

= Dk

i−1∑
s=n1

(
k−1∏
l=s+1

Dl

)
Es
(
Ss+1
i

)T
+ (I − EkKk+1)

= DkF
k
i + (I − EkKk+1) ,

and if i ≥ k + 1, then i ≥ k, and we have that

F k+1
i =

k∑
s=n1

(
k∏

l=s+1

Dl

)
Es
(
Ss+1
i

)T
= Dk

k−1∑
s=n1

(
k−1∏
l=s+1

Dl

)
Es
(
Ss+1
i

)T
+ Ek

(
Sk+1
i

)T
= DkF

k
i + Ek

(
Sk+1
i

)T
,

which all satisfy (A.6).

A.3. Proof of Lemma 2.9. For n1 ≤ k ≤ n2 − 1, the definition of Ek (2.5),
Assumption 2.1, and the definition of Wk (2.7c) imply that

‖W−1
k ‖ ≤

1

λmin(Rk)
≤ 1

λR

and thus

‖Ek‖2 ≤
C2
B

λR

∆
= CE .

Proposition 2.7 and (2.7d) imply that ‖Lk‖2 ≤ βCACB/λR
∆
= CL. Lastly, Assump-

tion 2.1 and (2.4) give that

‖fk‖2 ≤
(
CB +

CBCR
λR

)
‖b̃i‖2 ≤ 2

(
CB +

CBCR
λR

)
U

∆
= l0.



TEMPORAL DECOMPOSITION FOR DYNAMIC OPTIMIZATION 2569

A.4. Proof of Lemma 2.10. Proposition 2.6 gives

Cki =

min (i,k)−1∑
s=n1

(
k−1∏
l=s+1

Dl

)
Es

(
i−1∏
l=s+1

Dl

)T
Qi,

F ki = −
min (i,k)−1∑

s=n1

(
k−1∏
l=s+1

Dl

)
Es

(
i∏

l=s+1

Dl

)T
Ki+1

+

(
k−1∏
l=i+1

Dl

)
(I − EiKi+1)1(k≥i+1),

where Es = B̂Ts W
−1
s B̂s (Definition 2.5). Lemma 2.9 gives that ‖Es‖2 ≤ CE . Using

Proposition 2.8, the triangle inequality and properties of norms, we have that

‖Cki ‖2 ≤
min (i,k)−1∑

s=n1

CECQC
2
1ρ
k−s−1ρi−s−1

≤ CECQC2
1

{
ρk−i

∑i−1
s=n1

ρ2i−2s−2, i ≤ k,
ρi−k

∑k−1
s=n1

ρ2k−2s−2, k < i,

= CECQC
2
1

{
ρk−i

∑i−n1−1
t=0 ρ2t, i ≤ k,

ρi−k
∑k−n1−1
t=0 ρ2t, k < i,

≤ CECQC
2
1

1− ρ2
ρ|k−i|.

Similarly for F ki , we have that

‖F ki ‖2 ≤
min (i,k)−1∑

s=n1

CEC1βC
2
1ρ
k−s−1ρi−s−1 + (1 + CEβ)C1ρ

k−i−11(k≥i+1)

≤ CEC1βC
2
1

1− ρ2
ρ|k−i| +

C1(1 + CEβ)

ρ
ρ|k−i|.

Letting

C2 =
CECQC

2
1

1− ρ2
, CF =

CEC1βC
2
1

1− ρ2
+
C1(1 + CEβ)

ρ

completes the proof.

A.5. Proof of Proposition 2.16. The Karush–Kuhn–Tucker (KKT) condi-
tions for problem (2.1) are

2Rku
∗
k − CTk λ∗k +BTk φ

∗
k = 0, n1 ≤ k ≤ n2 − 1,(A.7a)

2Qk(x∗k − dk) +ATk φ
∗
k − φ∗k−1 = 0, n1 + 1 ≤ k ≤ n2 − 1,(A.7b)

2Qn2
(x∗n2

− dn2
)− φ∗n2−1 = 0,(A.7c)

x∗k+1 = Akx
∗
k +Bku

∗
k, n1 ≤ k ≤ n2 − 1,(A.7d)

lk ≤ u∗k ≤ bk, n1 ≤ k ≤ n2 − 1,(A.7e)

λ∗k ≥ 0, n1 ≤ k ≤ n2 − 1,(A.7f)
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where λ∗k are the optimal Lagrange multipliers associated with the active constraints
Cku

∗
k = b̄k.
We prove the result by induction starting from the rightmost endpoint. When

k = n2 − 1, KKT condition (A.7c) gives

φ∗n2−1 = 2Qn2
x∗n2
− 2Qn2

dn2
,

which satisfies (2.19) because Mn2
n2

= Qn2
, as defined in (2.7f). Suppose (2.19) is true

for k. Then, for k − 1, (A.7b) gives

φ∗k−1 = ATk φ
∗
k + 2Qk(x∗k − dk).

Then by substituting the induction hypothesis and (A.7d), we have that

φ∗k−1 = 2ATkKk+1(Akx
∗
k +Bku

∗
k) + 2Qk(x∗k − dk)

− 2ATk

(
n2∑

i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi

)
= 2ATkKk+1(Akx

∗
k + B̂kv

∗
k + fk) + 2Qk(x∗k − dk)

− 2ATk

(
n2∑

i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi

)
,

since (2.4) implies that B̂kv
∗
k + fk = B̂kû

∗
k + B̃k b̃k = Bku

∗
k. Substituting v∗k from the

optimal control law (2.6) then gives the following:

φ∗k−1 = 2
(
ATkKk+1Ak +Qk +ATkKk+1B̂kLk

)
x∗k

− 2ATk

(
n2∑

i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi

)
− 2Qkdk + 2ATkKk+1fk

+ 2ATkKk+1B̂kW
−1
k B̂Tk

(
n2∑

i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi −Kk+1fk

)
(2.7b),(2.7d)

= 2Kkx
∗
k − 2ATk

(
n2∑

i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi

)
− 2Qkdk + 2ATkKk+1fk

− 2
(
B̂kLk

)T ( n2∑
i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi −Kk+1fk

)
(2.7e)

= 2Kkx
∗
k − 2Qkdk − 2DT

k

(
n2∑

i=k+1

(
Mk+1
i

)T
di +

n2−1∑
i=k+1

(
Sk+1
i

)T
fi −Kk+1fk

)

= 2Kkx
∗
k − 2

n2∑
i=k

(
Mk
i

)T
di − 2

n2−1∑
i=k

(
Ski
)T
fi,

where the last equality follows from (2.7f) and (2.7g). This completes the proof.
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A.6. Proof of Lemma 2.17. Propositions 2.8, 2.16, and Corollary 2.15 give

‖φ∗k‖2 ≤ 2βCg + 2m0

n2∑
i=k+1

‖Mk+1
i ‖2 + 2l0

n2−1∑
i=k+1

‖Sk+1
i ‖2

≤ 2βCg + 2m0CQ

n2∑
i=k+1

C1ρ
i−k−1 + 2l0β

n2−1∑
i=k+1

C1ρ
i−k

≤ 2βCg +
2C1(m0CQ + βl0)

1− ρ
∆
= Cφ,

where m0 is the bound on the reference trajectory in Assumption 2.12 and l0 is the
bound on ‖fi‖ derived in Lemma 2.9.

A.7. Proof of Lemma 3.5. Let

L(y, θ) = yTGy/2 + yT c(θ) + λT (Ay − r) + φT (By − d(θ))

+ θTFθ + yT c1 + θT c2 + C
(A.8)

be the Lagrangian of problem (3.8). Then we have that

∇2
(y,θ)L =

[
G ∇θc
∇Tθ c ∗

]
.

Since G and F are positive definite and LICQ holds at y0, from [6, Theorem 5.53]
and [6, Remark 5.55] we have that

Dpy(θ0) = argminh∈S
[
hT pT

] (
∇2

(y,θ)L(y0, θ0)
)[
h
p

]
= argminh∈S h

TGh/2 + pT
(
∇Tθ c(θ0)

)
h,

(A.9)

where S is the solution of linearized problem

minh (Gy0 + c(θ0) + c1)
T
h+

(
∇Tθ c(θ0)y0 + 2Fθ0 + c2

)T
p

s.t. Bh− (∇θd(θ0)) p = 0,

AI(y0,θ0)h ≤ 0,

(A.10)

and S is given by

S =

{
h :

[
B −∇θd(θ0)

] [h
p

]
= 0,

[
AI+(y0,θ0,λ̄) 0

] [h
p

]
= 0,

[
AI0(y0,θ0,λ̄) 0

] [h
p

]
≤ 0

}
.

Thus the directional derivative Dpy(θ0) of y(θ) along direction p at θ0 is the solution
of the problem

minh hTGh/2 + pT
(
∇Tθ c(θ0)

)
h

s.t. Bh− (∇θd(θ0)) p = 0,

AI+(y0,θ0,λ̄)h = 0,

AI0(y0,θ0,λ̄)h ≤ 0.

(A.11)

Let I1 be the set of active inequality constraints of problem (A.11). Then I1 ⊂
I0(y0, θ0, λ̄) and let I ′(θ0) = I1 ∪ I+(y0, θ0, λ̄). The KKT condition of problem (A.11)
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is hence

G̃
∆
=

 G ATI′(θ0) BT

AI′(θ0) 0 0
B 0 0

 , G̃

h∗φ∗1
φ∗2

 =

−∇θc(θ0)p
0

∇θd(θ0)p


for some Lagrange multipliers φ∗1 and φ∗2. Since LICQ holds at y0, rows of AI′(θ0)

and B are linearly independent. Together with the fact that G is positive definite,
we have that G̃ is invertible. Denote the first row of G̃−1 to be [ p11 p12 p13 ]. Then we
have that

Dpy(θ0) = h∗ = (−p11∇θc(θ0) + p13∇θd(θ0)) p.

On the other hand, for problem (3.9) with I ′(θ0) constructed above, the KKT
condition is

G̃

y∗I′(θ0)(θ)

ψ∗1
ψ∗2

 =

−c(θ)r′

d(θ)


for some Lagrange multipliers ψ∗1 and ψ∗2 . Since G̃ is invertible, we have that

y∗I′(θ0)(θ) = −p11c(θ) + p12r
′ + p13d(θ).

It follows that

dy∗I′(θ0)(θ)

dθ

∣∣∣∣∣
θ=θ0

= −p11∇θc(θ0) + p13∇θd(θ0).

As a result, we have that

Dpy(θ0) =

(
dy∗I′(θ0)(θ)

dθ

∣∣∣∣∣
θ=θ0

)
p,

which proves the claim.
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