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A LIMITED-MEMORY MULTIPLE SHOOTING METHOD FOR
WEAKLY CONSTRAINED VARIATIONAL DATA ASSIMILATION*

WANTING XUt AND MIHAI ANITESCU#

Abstract. Maximum-likelihood-based state estimation for dynamical systems with model error
raises computational challenges in memory usage due to the much larger number of free variables
when compared to the perfect model case. To address this challenge, we present a limited-memory
method for maximume-likelihood-based estimation of state space models. We reduce the memory
storage requirements by expressing the optimal states as a function of checkpoints bounding a shoot-
ing interval. All states can then be recomputed as needed from a recursion stemming from the
optimality conditions. The matching of states at checkpoints is imposed, in a multiple shooting
fashion, as constraints on the optimization problem, which is solved with an augmented Lagrangian
method. We prove that for nonlinear systems under certain assumptions the condition number of the
Hessian matrix of the augmented Lagrangian function is bounded above with respect to the number
of shooting intervals. Hence the method is stable for increasing time horizon. The assumptions
include satisfying the observability conditions of the linearized system on a shooting interval. We
also propose a recursion-based gradient evaluation algorithm for computing the gradient, which in
turn allows the algorithm to proceed by storing at any time only the checkpoints and the states on
a shooting interval. We demonstrate our findings with simulations in different regimes for Burgers’
equation.
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1. Introduction. Data assimilation is the process of estimating the underlying
states of a physical system based on reconciliation of observations and physical laws
governing its evolution [6, 8, 15]. The setup is most commonly described by a state
space model with stochastic normal model error and measurement noise [15],

(1.1) To =B +NB, Tj+1 :Mj(:L'j)JrT]j, Y; :Hj(:L'j)Jr{:“j,
(1.2) ne ~N(05,Qp), 1, ~N(0;,Q;), 5 ~N(0r,R)),

where z; € Rj,yj € R, The mapping M;(-) - R’ — R’ models the physical law
governing the evolution of the system dynamics, typically discretizations of partial
differential equations. We assume M, (-) is at least twice continuously differentiable.
The random variable 7; models the stochastic model error and has a normal distri-
bution with mean 0; and covariance Q; € R7*7. The random variable 5 models
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the initial state as a normal distribution with mean g and covariance Qg € R7*7.
The function H;(-) : R — RL maps the states into observed quantities, whereas ¢;
models measurement error that has mean Oy and covariance R; € REXL We also
assume all covariance matrices to be positive definite.

With these definitions, we are interested in the state estimation problem [25]: We
are given the background mean state z g; evolution function M, (-); measurement oper-
ator H;(-); measured quantities y;; and covariance matrices for background error, @z,
model error, Q; for j =0,1,..., N —1, and measurement error, R; for j =0,1,..., N
at N + 1 equally spaced time points. We want to determine the state trajectory
Z0,%1,-..,2N that best explains the data y; under these assumptions. The problem
is also named data assimilation or 4D-Var [6, 8, 15, 21] in atmospheric sciences ap-
plications, when M, () is obtained from the discretization of three-dimensional (3D)
dynamics. In particular, we will focus on the circumstance where we are memory-
limited, and thus we may be unwilling to simultaneously store the entire trajectory
vector because of the O(JN) memory requirements.

In the limiting case of @; = 0«7, and thus n; = 0, the system is called strongly
constrained in the sense that every state is determined by the previous one and all
states are functions of only the initial state xy. However, many sources (e.g., missing
physics, discretization errors, and semi-empirical /parametrized process descriptions)
can contribute to model errors that have nonnegligible effects [7, 26, 27]. The explicit
inclusion of the model error term in the physical evolution [10, 23, 24] leads precisely
to (1.1)-(1.2). In atmospheric sciences, such models are called weakly constrained
[29]. We note that, although the mean-zero, Gaussian, temporally uncorrelated model
error, as described in (1.2), is commonly used in a typical operational setting [16, 26],
the actual model error can exhibit nonzero mean, non-Gaussianity, and temporal
correlation. The mean term can be added to the dynamics to reduce the problem
back to the form in (1.1)—(1.2). If the model error exhibits temporal correlation, then
this can be accommodated by means of a shaping filter whereby the dynamics of
the noise itself is modeled with an autoregressive-type approach and adjoined to the
system dynamics [5, 29]. This situation can be again represented with our formulation
(1.1)-(1.2) by using a larger system. The matrix @; can be any positive definite
matrix. It thus can model a rich set of spatial correlations. On the other hand, to
not affect the storage considerations of this paper, we need to be able to apply it and
its inverse using no more than the storage of a few state vectors. This is certainly
the case if (); is sparse in a natural basis, such as the canonical or spectral (Fourier)
basis. The latter case is one of the most frequently posited proposals for model error
in atmospheric sciences [4, 19, 29]. When it comes to non-Gaussian noise, however,
the extension of our formulation is not trivial. In our estimation it is likely that, if
the distribution of the noise can be written explicitly and depends only on the state
T, our recursive multiple shooting approach could apply as well. The specific form
of the recursions and the numerical properties, however, would be quite different,
so that direction would at least require a new analysis. Nevertheless, we note that
the vast majority of current proposals for model error are done in terms of Gaussian
distributions [4, 18, 19, 20, 27, 28, 29, 30]. We thus conclude that the formulation
(1.1)—(1.2) can accommodate several cases and extensions of interest.

The paradigm (1.1)—(1.2) is called a state space model, and it is one of the most
studied state estimation paradigms [15]. It has generated a large number of methods
to solve it, including Kalman filters, extended Kalman filters, and particle methods
[9, 15]. However, such methods may not be suitable to the kind of problems described
here because of reliance on linearity of M;(-) (Kalman filters) [14]; memory that
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increases superlinearly with the dimension of = (extended Kalman filters) [12]; and
slow convergence, particularly when interested primarily in best estimates (particle
methods) [3].

In this work we focus on wvariational methods: these are methods that aim to
express the minus loglikelihood of the state space model (1.1)—(1.2) and then minimize
it with deterministic methods, such as limited-memory BFGS (L-BFGS) [22]. The
objective function of that minimization is the following weakly constrained function
[18, 20, 27, 28, 30]:

(1.3) I(zo:n) = % <Z(%‘(i€j) + @5 (%5, 541)) + 7N($N)> ;

=0
where ¢; (2, 2j11) = (241 — M (2;))" Q7' (wjur — Mj(5)) /2, 0<j<N-1,
vi(z5) = (y; — Hy(z;))" Ry (y; — Hy(x;)) /2, 1<j<N,
Yo(20) = (v0 — 28) Q5" (z0 — x8) /2 + (yo — Ho(x0))” Ry (yo — Ho(wo)) /2.

The best estimation of the states g, x1, ...,y then amounts to minimizing (1.3),
which is equivalent to maximizing the likelihood of the state space model. In the
strongly constrained case, only xg is a free variable. Using adjoint approaches for
the minimization of (1.3) in that limiting case with a checkpointing strategy results
in storage requirements of about O(Jlog(N)) with a recomputation effort that is
relatively bounded with J and N [11]. In the presence of model error, however, it is
no longer possible to constrain the states by using model propagation, and hence the
storage is N + 1 fold larger since all states xq,x1,...,xny are free variables. In the
case of a large J or N, which we are increasingly approaching in atmospheric sciences
as more refined physics models are coming online, the sheer amount of storage makes
applications to real systems with higher resolution out of practical reach.

To this end, we recently [1] proposed reducing memory by using the constraints
of the optimality conditions themselves.

(14) 0= Vgco(bo(xo,.rﬂ + Vg;o’)/o(xo),
(15) 0=Vo,0j(x;,2j41) + Vo, ¢j-1(xj-1, %) + Va,75(x;),  1<j<N,
(16) 0:VmN(ﬁNfl(fol;xN)+VIN’YN('TN)'

Enforcing optimality conditions (1.4) and (1.5) gives a recursion for computing z; in
terms of xp and x;41 in terms of x; and x;_; for 1 < ¢ < N — 1. Hence each state
effectively is reduced to a function of just the initial state by using the optimality
conditions as constraints; we call this recursively computable function \;(zg), ¢ =
1,2,..., N. The objective function then becomes

(1.7) NG <ny )+ ¢i (Ni(z ),Ai+1(xo))+vN(/\N(xo))>~

1=0

When minimizing (1.7) only ¢ is a free variable. The evaluation of the components
of I' can be carried out by recursion. This results in significant memory savings when
N is large. Quasi-Newton methods such as L-BFGS can be used to minimize (1.7).

The recursive nature of the method opens the door for instability when the time
horizon increases or under certain model parameters, as also discussed in [1]. That
is, the recursion may exhibit rapid exponential increase of the solution, resulting in
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numerical overflow. Numerical experiments show that in the presence of large model
error, large observation gap, large time step, or increased time horizon, the method
may encounter such stability issues and fail to progress. The method that minimizes
(1.7) in [1] uses essentially a single shooting idea. Each initial state xo determines
the whole trajectory through \;(zg), and the optimality is found by satisfying the
optimality condition at the end V., én_1 + Vayyvn = 0. To control the instability
that is induced by this recursion, we propose a multiple shooting approach for which
multiple restart points across the whole horizon are used. We call such restart points
checkpoints, given their identical functionality in adjoint calculations [11]. Each check-
point sequence determines a “shooting” segment of the trajectory, and optimality is
achieved by both minimizing the resulting function and matching at each checkpoint.
To compute the function and its gradients on a shooting interval, we use a recur-
sion like (1.5) restarted at the last checkpoint: a “shooting” approach. Employing
checkpoints increases memory usage and introduces constraints to the optimization
problem. However, at the cost of modestly increased storage, we expect the method
to improve stability by reducing the length of recursion on each segment.

The rest of this paper is organized as follows. Section 2 describes the low-memory
multiple shooting method and proves the consistency of the solution with the full-
memory data assimilation method. In section 3, we show that for nonlinear systems
within a certain regime, the condition number of the multiple shooting method is
bounded above with respect to the number of shooting intervals. Section 4 describes
a recursive limited-memory algorithm to evaluate the descent direction of the resulting
optimization problem in preparation for numerical experiments. Section 5 presents
numerical experiments that implement the multiple shooting method for Burgers’
equation under different parameter settings. Improvements and limitations are dis-
cussed in the conclusion.

2. Multiple shooting approach. We note that the recursion defining z;4;
through (1.5) is a two-term recursion; therefore, a checkpointing approach here would
need two consecutive states. In the following, d pairs of checkpoints {xp, _1,2p,,
c e XPy—1,XTp, ) € R247 are equally spaced across the entire state. To simplify the
discussion, we assume that the number of states on each shooting interval is constant;
we let k = N/(d+1) be that number. We also denote Py = 0 and P11 = N. For each
shooting interval [xp,, zp,.,] we define by I'; the component of the objective function
(1.3) attached to that interval:

P1—1
A 1 ~ ~ ~
(2.1a) Po(zo) = & > 2 (@j(x0)) + 65 (T (w0), 11 (20)) |
=0
1 Pii1—1
(2.1b) Li(zp—1,2p,) = N( > (@ (@p1, )
J=Pi
+¢j(5j($Pi1»$Pi),5j+1($PilvaPi))>» 1<i<d-1,
R 1 N—-1
(2'1C) Fd(xpd—l’xpd) = N( Z Vk(%j(xpi—lampi))
Jj=Pa

+¢;(Zj(p,—1,2p,), Tjy1(Tp—1,7p,)) + WN(EN@P@)))
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The mappings Z;(xp,—1,zp,) are defined implicitly from the optimality conditions
(1.4) and (1.5). This step is possible as soon as V ¢(z;, xj41) = Vi, Mj(z;)Q; Yaj
—M;(x;)) is invertible in x;41. This is equivalent to requiring that V,, M;(x;)Q; !
be an invertible matrix. Since M;(-) are propagating operators, they can be assumed
to be invertible from properties of dynamical systems (see also the discussion at the
beginning of [1, section 3]). Since the covariance matrix @, is assumed to be positive
definite, it immediately follows that the recursion (1.5) is uniquely solvable in z ;1.

At points immediately following the checkpoints, the mappings Zp, +1(zp,—1,zp,)
are the solution of the optimality conditions (1.4) and (1.5) at checkpoint P;:

(22) 0= Vmo’}/Zo (xo) + vwo¢Po (.TO, E1)
(23) 0= VICPi ¢Pi—1 (xPi_17 xPi) + vﬂCPi’yPi (xpz) + vﬂfpi ¢Pi (xPi? 5Pq‘,-i-l)
for i = 1,...,d. At all other points, Z;(xp,_1,zp,) is defined recursively from
Zj_1(zp,—1,zp,) and T;_o(xp,_1,zp,) by using the optimality conditions (1.5) as
follows:
(24) 0=V, 0j-1(Tj-1,75) + Vau,;75(T5) + Va; 05(T5, Tj41)
for P, < j<Py1—1,i=0,...,d. Under model (1.1), the recursions (2.2)—(2.4) can
be written at points immediately following checkpoints as
(2.5) 1 (o) = Mo(xo) + QoV ™" Mo(20) Q5" (x0 — )
— QoV " Mo (x0) V" Ho (o) Ry (yo — Ho(w)),
(2.6)Tp1(zp, wp—1) = Mp,(xp,) + Qp,V " Mp,(2p,)Qp_ (xp, — Mp,—1(xp,—1))
- QPiV_TMPi (mPL’)VTHPi (mPi)RI;/L-l (yPi — Hp, (xPl))

fori=1,2,...,d. At all other points between checkpoints we obtain

2.7)  T(F5,T500) = My(F5) + Q; VT M;(Z,)Q; 1 (T — Mj_1(Z;-1))
— Q;V T M; (%) VT Hy(Z) R (y; — H; ()
Repeated use of (2.7) together with (2.5) and (2.6) results in computing all mappings
Zj(wp-1,7p,).
Then, by gathering the objective function components (2.1) and by imposing

matching constraints at the checkpoint pairs, we obtain the following multiple shoot-
ing optimization problem:

d
(2.8a) min TI'(zo,xp,—1,2pP,---,TP;—1,2ZP,) o(zo) E Di(zp,—1,2p,)

(2.8b) st cp(x) = —Zp, (x9) =0,

(2.8¢) g (z) = —ZTp,—1(x0) =0,

(2.8d) cz+1(1:) Py —Zpy, (p,—1,2p,) =0, 1<i<d—1,
(2.8e) git+1(x) =2xp, -1 —ZTp,,—1(xp—1,2p,) =0, 1<i<d-—1.

The Lagrangian associated with the constraint problem (2.8) is

(2.9) Lz, \¢) = Z Mei(x ZwiTgi(xL
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where © = (zo,2p,—1,%p,,...,Zp,—1,2p,) and A; € R7, 1p; € R’ are Lagrange multi-
pliers for the equality constraints ¢;(z) =0 and ¢;(z) =0,i=1,2,...,d.

We also define the full-memory form of the objective functions for each shooting
interval as follows:

P11
1 .
Li(epipi) = o vilar) + ey i) |, 0<i<d,
J=F;
(2.10) o
. _
La(zp,:n) = N Z v (i) + ¢5(x), xjv1) + N (TN)
Jj=PFa

We now define a list of symbols frequently used in the rest of the paper.
DEFINITION 1. For 1 <i<d and 0 <j < N, define

(a)
Bi(xj,xj41) = Va,;vi () + Vo, 05(25, 2541), 0<j<N-1,
aj(zj-1,7;) = Va; i 1(@j-1,25), 1<j<N,
0i(zj—1,25,2541) = aj(xj—1,25) + Bi(x), Tj+1), 1<j<N-1,

Oo(zo,z1) = Bo(xo,21); On(zN-1,2N) = an(zN-1,2ZN) + Vayyn(TN).

Note that for T'; defined in (2.10), we have

or; T .
——— | =[85.0h 1,0 1. 0h 0<i<d-—1
(a(-rPi:Pi+1>> [ﬁpl Pitl Pit1—1 PI-H] ’ S1> y

T
& — [6T 9T T 9T}
8(de:N) Py Y Pg+1> yON_1,0N] -

(0)(

Zo mox]( 0); Og]v

)=V

LS»PF @p—1,2p,) = Vap, 1 Zj(Tp—1,2P,), P —-1<y,
)=V

x2J

L;P)(xP—th

(c) Let Ni(xzp,—1,zp,) be (k+1)J X
dimensional matrices so that

Tj(xp—1,%p,), P -1<y.

J dimensional, and let Ao(xg) be (k+1)J xJ

L(P_l)(xPi—laxPi) L;fi)(xpi—17xpi)

~ -1 P;
I@p,.piys) LS» 1 @p,—1,xp,) Lgaiil(ﬂcPﬁhﬂCPi)
Mwr-nr) = 5 ey — : : ’

Lo erner) Lyl (eroaser)
9(Zo:p,) T
Rofao) = 50 = (L8 (o)™, L @o) T, L) ()]

Note that the first block row of A; is [0,1;] and the first block row of Ay is
Iy. Let Lo(xg) and Li(xp,—1,2p,) be the last two block rows, respectively, of
Ao(xo) and Ai(xp,—1,2p,) so that

(0)
Lo(zo) = lL %0)(( ))]
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(P;i—1) (P3)
LP,;+1—1(xP1;—17xP1> LPi+1—1(‘TPi—1ﬂ qu‘,)

Li(xp,_1,xp,) = T )
i(Tp—1,7p,) L(Pljlll)(xpi_l’xpi) L(Pf:)l(xpi—l’xpi)

(d) Let Ji(xp,—1,2p,) and Jo(xzo) be J(k+ 1) x J(k + 1) dimensional symmetric
block tridiagonal matrices defined as follows (with the arguments of B.,0.,«.
dropped for brevity):

[ Vap, BP, \Y Op,

TP, +17

vﬂﬂpi 9P71+1 VzP,L-+1 0Pi+1

vmpi+1—10P7‘,+1—1 Vzpi+1 0Pi+1—1

0 VmPi+1—19Pi+1 vﬂ?P,iJrlaPH»l

Note that J; = V2T; for 0 <i < d—1, and V?T'y differs from Jy by only the
last diagonal block element so that (Jg) k) + Va YN = (V2La) (k) -

We now illustrate the relationship between the solution of the multiple shoot-
ing constrained optimization problem (2.8) and the solution of the full-memory data
assimilation problem (1.3).

THEOREM 2. Let xf. 5 be a local minimizer of I'(xo.n) (see (1.3)) that satisfies the
first- and second-order sufficient conditions. Let z* = (x, Th 1, Tp s Tp, 1, x};d).
Then

(a) a* satisfies the KKT conditions of (2.8) with Lagrangian multipliers A} =

—Vap, Op—1(Tp,_1,Tp,), 7 =0 for 1 <i <d.
(b) The Hessian matriz of the Lagrangian at optimality satisfies

d
w V2L X ) w =Y ] AT TiA
=0

T
+ (Lgxlrjdil)ww + Lg\fd)wmﬂ) ViN'YN (Lﬁfd’”wzd + Ls\lfjd)’lUQd-i—l)

fO’l“ w = (wh N ,w2d+1) S R(2d+1)‘], ’UA}2 = (wgi,wgiﬂ), 1 S ) S d, and
’lﬂo = WwW1.

(¢) x* satisfies the second-order sufficient conditions of (2.8).

Proof. The optimality conditions (2.2)—(2.4) uniquely determine the recursion of
Zj, 0 < j < N (Theorem 1 of [1]). Therefore, the solution z{ 5 of (1.3) coincides
with the state propagated starting from the checkpoints by using the recursions (2.2)—
(2.4), namely, z; = z7 for 0 < j < N. In the rest of the proof, the dependence of the
symbols defined in Definition 1 on the checkpoints is suppressed for brevity.

First, we aim to verify part (a), that is, check the KKT conditions with Lagrangian
multipliers A} = =V, ¢p,_1(zp,_,7p,), 7 =0 for 1 <i < d. Note that from the
definitions of ap,, Sp, (Definition 1(a)) and optimality conditions (1.4) and (1.5), we
have that for 1 < < d,

(2.11a) ap, (&h,_1,ah) + N =0,
(2.11b) Br (@ ) = Af = 0.

By the chain rule and from the definition of the constraints (2.8b) and (2.8¢) and
Definitions 1(a) and (c), the first-order derivatives are

(2.12) Vg, L(z", A", ¢") = Vzof‘o(xa‘) — Vo1 ()N — Vg1 ()97
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@o.r)\" 9T 07T o T
— 1 L * L E3
( (o) ) Aaop) A ML ¥

T
= AgVO +L$:(,)1)_1 1], where
0o (g, T1)
ol(i(]v%lv%Q)
(2.13) Vo=

Op,—1(Tp,—2,Tp,—1,Zp,)
ap, (ffPl—l?%Pl) + A;k

Optimality conditions (1.4), (1.5) and (2.11a) imply V5 = 0, and hence we have
Vo L(z*, X\, 90*) = 0.
For 1 < i < d —1, from the definition of the constraints (2.8d) and (2.8¢) and
Definitions 1(a) and (c), we obtain that
(2.14) V(zpi_l,zpi)L(x*7 A YY) = V(xpi_l,xpi)f‘i(x?—’ifhx;’i)
- |:V:chi1gi($*)w;K + vzpi710i+1($*))\f+1 + vaiflgiJrl(m*)w;k—i-l
Vap, ()N + Vap, cip1 (@)A1 + Vap, gita ()97

~ T N P T . p—-)T .,
N < 8(17P1-:P1:+1) ) or; _ (o *Lgrprl_)l 1/}i+1 *LED,;H ) )‘i+1
- TP P R Py T,
Ozpi—1,2p,) Ozp:pis) Aj _LPi+171 i _LPi+1 A1

or — L(Pi—l) T *
7 Piy—1 1+1

wr) T
_LPi+171 ’;k-f-l
BPi (l;*Pl’ §P71+1) - /\?
Op,+1(Tp,s Tr+1,Tp,+2)

= ATV, - , where

(2.15)V; :=

9Pi+1*1(mpi+172a LP;it1—1) xpi+l)
-~ -~ *
ap; (wpi+1*1’ ‘TPiJrl) + )‘i+1

Optimality conditions (1.4) and (1.5) and (2.11a) and (2.11b) imply that V; = 0, and
hence we have V(zpi_l_’zpi)L(x*, A5 %) = 0.

For the last shooting interval, from the definition of the constraints (2.8d) and
(2.8¢) and Definitions 1(a) and (c), we obtain that

(216) V(de7171Pd)L(:E*7 >‘*7 1/}*) = V(Ipdfhipd)f‘d(x*Pd—la z};d)
(Vap, 19a@ )] _ 7 ¥
— - indCd(x*))\Z =A;Va— E where

[ ﬁpd('r};dvipd-i-l) - A:;
9Pd+1(xpdvmpd+1’xpd+2)
(2.17) Vg =
ON_1(TN-2,TN—-1,TN)
ON(Tn-1,ZN)

Optimality conditions (1.5) and (1.6) and (2.11b) imply that V; = 0, and hence we
have V yL(x*, \*,4*) = 0. This completes the proof of part (a).

Tp;—1,2p,
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We now derive the Hessian matrix. For 1 < i < d, directly applying the chain rule
to (2.12) and (2.14), we note that V; = 0 for 0 < i < d—1 give that V2 L(z*,\*,¢*) =
AT JoAg and that V2 L(x No*)y = AT JA for 1 <i<d—1.

For the last shootlng mterval applying the chain rule to (2.16) and from Defini-
tions 1(a) and (d) and the fact that Vz = 0, we obtain that

—l,zp

(Pa—1)T

N ]er [L<Pd 1>L<Pd>}

2 * * *\ _ AT
Viep, rap) L@ A 07) = Mg Jaha + LT
N

Since the constraints are separable, there are no cross terms in the Hessian matrix.
For w = (wy, ..., waqy1) € RV we define w; = (wai, waiyq) for 1 < i < d
and wo = wy. Then we have that

d
wT V2L(x*, \*, p)w Z AT JiNja;
(2.18)

Jr(Lg\erd_l)'LU2d+L1\];d w2d+1> mey (L( 4 1)w +L w2d+1).

This completes the proof of part (b).
The critical cone at optimality, from Definition 1(d) and (2.8d) and (2.8e), is

(2.19) O (z*, X\, 9*) = {w € RV . ¥ey(a*)w = 0, Vgi(z*)w = 0,1 < i < d}
= {w S R(2d+1) Wy =Ly qwiq,1 <0 < d}

We define the vector u € RWVHD by

L(O)wl, OS]SPb
u; :
L(P 1 i+L§'PZ)w2i+17 P+1<j<P1,1<i<d,

so that for 0 < i < d,

T
. T T T
(2.20) A = |wy41,Up, 11, - upiﬂ] .

From Definition 1(c) the first block row of A; is [0, I ;] for 1 <4 < d, and Iy for i = 0.
Now we consider w € C(z*, \*,9*) and w # 0. This implies that w; # 0; and since

up = wi # 0, we have that v # 0. Note that since w € C(x*, \*,¢*), L(Pifl) =0,
and L(P) =1, we have from (2.19) that up, = way; 11 for 1 < i < d. Substituting this
equatlon into (2.18), using (2.20), using the expression of .J; from Definition 1(d), and
using the fact that from Definition 1(a) we have that V., Bp, + Vu, ap, = V., 0p,
for 1 < i < d, we obtain that

wI V2L (2%, N, ") w = ud Vo, Oouo + ul Va, Gour

N—1
+ ) (W] Ve, O5uj_1 +ul Vo O5uy + ul Vo, 05u41)
j=1
+ u%VfolﬁNuN_l + UTA}VJCNGNUN (Vio ~ (:E;N)) u > 0.

This completes the proof of part (c). d
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3. Stability analysis. The constrained optimization problem (2.8) is now solved
with an augmented Lagrangian method. From the Lagrangian function (2.9) and using
the notations of (2.8), we define the augmented Lagrangian function.

(3.1)
d

La(x, A\, p) = Z/\Tcl Z

i=1

NJ\‘:

d
Z ) + gi(x)" gi(x)) -

Here p > 0 is the penalty parameter that helps enforce feasibility. Augmented La-
grangian theory [22, Theorem 17.5] implies that, under the conditions stated in The-
orem 2, there exists @ so that for all 4 > i, when A\* and ¢* are the Lagrange
multipliers of (2.8), the solution z* of (2.8) is a local minimizer of (3.1). Hence the
convergence is ensured without increasing p indefinitely. The initial choice of p is
in practice a matter of some experimentation (as, for example, a starting value of
1 = 0 may result in divergence for nonconvex problems), but it is a standard issue in
nonlinear programming theory and practice [22]. Simple algorithms exist to update
the value of p on the way to convergence by increasing it when too-large infeasibility
is detected [22]. In the rest of this section, we assume p is fixed at some value p > fi.

In this section we investigate the condition number of the Hessian matrix for L 4
with respect to the number of shooting intervals. In ideal circumstances, the condition
number would be bounded above by a constant and thus would prevent exponential
growth of the solution in time, which is the signature of instability discussed in section
1. Our aim is thus to identify under what circumstances this favorable situation can
oceur.

For this analysis we use several simplifications to our approach. While our in-
vestigations have indicated that similar results can be obtained without making the
simplifications, leaving them out would significantly complicate and extend the anal-
ysis. We thus keep the number of time points in each shooting interval fixed at k,
and we use for all d shooting intervals a fixed time step At. Since k is fixed, d grows
linearly with N. We consider a constant covariance matrix for model error @) and
observation error R for all time steps. The observation mapping is time-dependent
linear; that is, H;(z;) = B;x; for all 0 < i < N and some B; € RL*/. Note that we
allow observation gaps in time, which can be modeled by setting some B; and the re-
spective observations to 0. Theorem 2(b), definitions of the constraints (2.8b)—(2.8¢)
and of the critical cone (2.19), and Definition 1(c) imply that the Hessian for L4 at
optimality satisfies

d d
(32)  w'VILA(* N 05w = ] AT i + > ||y — Lyt ||?
=0 i=1

T
+ (Ls\fd_l)wzd + Lg\lfgd)w2d+1> BYR'By (Lg\fd_l)wm + Lg\fd)wmﬂ)

for any w = (wl, . ,w2d+1) S R(2d+1)‘], where we denote ’LZIO = Wy, UA)I = (’U)gi, w2i+1)
for 1 <i<d.

We now introduce the definition of the observability matrix for each shooting
interval, which is based on the standard one for the linearized system on a given
system trajectory [13].

DEFINITION 3. For each 0 <1 <d, P; < j, denote

J
I VMi(z1) = VM;(2,)VM; 1 (1) ... VMp, (zp,).

I=P;
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Define

. Pi+k—3 T
CzT(.Z‘) = Bg«;’ (BPi+1vM$Pi (a?pl)) g e ey <BPL'+]€2 H VM[(.’E[))

I=P;
as the observability matrix for the (i + 1)th shooting interval.

For our work, the importance of the observability condition is that it will ensure
that the objective function of (1.3) when applied to the linearized system is positive
definite on one shooting interval.

LEMMA 4. Cj(x) being full rank is equivalent to

Q(’UJ) = Z ((ijrl — VMj(IEj)U)j)T Q_l (U)j+1 — VMJ(.’E])UJJ) + w;BfR_lijj)

Pi+k—2
j=P;

>0

for any 0 #w € R* and 0 < i < d.
Proof. Suppose there exists 0 # so € R/ such that C;sp = 0. Then we define

s = (sp,y---y8p+k—1) € R* such that sp, = so, sp,+; = ZP;JISZA V M (x;)so for
1 < j <k —1. Note that the assumption C;so = 0 and the definition of s imply that
Pi+j—1
0= BpiSO = Bpl.Spl, 0= BPi+j H VM[(&’[)SO = Bpi_‘_jSpi_i_j V1 S] S k—2.
I=P;

Then, (3.3) and the definition of s give that Q(s) = 0. Note that s # 0 since so # 0.
On the other hand, suppose Q(s) = 0 for some 0 # s = (sp,,...,sp,+1_1) € RE/.
Then Bjs; =0 and sj11 = VM,(z;)s; for P; < j < P; 4+ k — 2. Then we have

Pi+j—1
(3.4) 0=DBpsp, 0=Bp; [[ VMilx)sp, V1<j<k-2.
l:Pi
Then, (3.4) implies that C;sp, = 0. Note that sp, # 0 because otherwise s =0. 0O
A full-rank result holds for the Jacobian matrix of the recursion.
LEMMA 5. Aj(zp,—1,xp,) is full rank for 1 <i <d.

Proof. Adapting optimality recursion (2.6) to our simplified model gives

%Pi‘f’l = MPi (xPz) + QV_TMPz‘ (xPi)B;giR_l (BPi:EPi - sz‘)
+QV " Mp,(zp)Q " (xp, — Mp,_1(xp,—1)),

(Pi—1) _ 0%p41

and it implies Lp' ;" = 5= = —QVTMp, (2p,)Q 'V Mp,_1(zp,_1), which is

invertible. Since the first block row of A;(zp,_1,2p,) is (0,I) and Lgf,:ll) is the
(2,1)th block, A;(zp,—1,zp,) is full rank. 0

In addition to observability on one shooting interval, we will make slightly stronger
assumptions than the ones implied by Lemmas 4 and 5. That is, we will assume that
those bounds hold uniformly with the shooting interval index i.
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ASSUMPTION 6. There exist v, > 0 and pr > 0 dependent on k but not on i, or
d, such that for any N > 0, we have the following.

(a) The observability matrices C;(x*) are full rank for 0 < i < d.

(b) Under (a),

Pi+k—2
* T — % _
> ((wj+1 — VM, (z)w;)” Q" (wj41 — VM;(x})w;) +w; Bj R 1ijj) > e f|w|?
J=P;

for all0<i<d, w=(wp,...,wp1r_1)€RF.
(€) Amin(Ai(xp, 1, 2p )T As(@h_y,xh)) > pr for all 1 < i < d.

The second set of assumptions characterizes the system, states, and observations
as follows.

ASSUMPTION 7. For any N > 0,
(a) maxo<j<n ([[23]], |zB]l) < C1 and maxocj<n [ly;|| < Co for some constant

C1 >0 and Cy > 0,‘

(b) maxo<j<n ||Bjllr < by for some constant by > 0;

(c) maxo<;<n (||VMJ(:E;‘)||F, V=M (z5)||lr) < A for some constant A > 0;
(d) maxo<j<n (IM;(25)|lr) < mo for some constant mg > 0;

(e) maxo<j<n ||Va,vec (VI M;(23)) || < Ay for some constant Ay > 0.

In fact, Assumptions 7(d) and (e) are consequences of (a) and the fact that M is
at least twice continuously differentiable. We nonetheless state them as assumptions
so that the bounds we will use in the proof will have convenient references.

We now make a small nonlinearity assumption. It is shown in [1] that for s x s
matrix S and s x 1 vectors u and z, we have

(3.5) V. (Su) = (u” @ I,)V vec(S) 4+ SV u.

Here we define MJ@)(’L&) = (u' @ I;)V,,vec (VTMJ(.’E;)) If u is not a function
of xj, then M]@) (u) = Va, (VI Mj(23)u). Moreover, if the system is linear, then
Mj@)(u) = 0; therefore, bounds on M ;2)(u) are bounds limiting nonlinearity. Note
that under Assumption 7(e), denoting Cy = A;v/J, we have for any N > 0 that

2
(3.6) Juax M (w)]lp < Ayflu @ I < Collu.

For our proof, however, we need an even sharper restriction for the nonlinearity de-
scribed below.

ASSUMPTION 8. There exists 0 < by, < v such that for any N > 0,

max ||Mj(2) Q" (x50 — M) lr < br,

0<j<N

where i s as defined in Assumption 6.

Other than the observability assumption on each shooting interval, Assumptions
6 and 7 are primarily stating uniformity and thus are only marginally stronger than
the existing assumptions. Assumption 8, on the other hand, puts a relatively hard
bound on how much nonlinearity we can tolerate in our analysis. At the end of this
section we will discuss the effect of this assumption and its significance.

With these definitions and assumptions, we now proceed to the main results of our
paper. That is, we now prove that for the nonlinear system satisfying Assumptions 6,
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7, and 8, the condition number of the Hessian matrix for the augmented Lagrangian
is bounded above. First, we derive a lower bound.

PROPOSITION 9. Under Assumptions 6 and 8, for any w € R¥ and ||w|| = 1, we
have that wTJi(m}i)w >, — by for 0 <i<d.

Proof. Referring back to Definition 1(a), we have that

(3.7)
VaoBo =V Mo(23)Q ™'V Mo(xp) + BER™ By — M{? (Q (a7 — Mo(z))) + Q3
Vi, B = VIM; (&) Q 'V M;(2) + BFR'B; — M® (QY(a}yy — My(x))))
0<j<N-1,
Vo, =Q7', 1<j<N, Vg, ,0;=-Q 'V'M;_1(z}_)), 1<j<N,

Ve, 0i =Va,05+ Va5, 0<j<N Vg, 0;=-V"ME)Q "' 0<j<N-1

So for ||w|| = 1, referring to Definition 1(d), we have
Pi+k—2
U}TJZ(CC}%)’[U > Z ((ij - VMj(x;)wj)TQA (ij - VM](JZ;)’LUJ) + ’w]TB;FRilijj)
Jj=P;
Pi+k—2
- wf My Q7 (2541 — My (a)))) wy,
Jj=P;

for which equality holds for 1 < ¢ < d. For ¢ = 0, the difference between the two sides
is wl’ Qélwo, which is nonnegative. By Assumption 6(b) we have that

Pi+k—2
Z ((U)j+1 VM ( ) ])TQil (U)j+1 VM ( )’LUJ) +’UJTBTR lB ’UJJ) > Yk
Jj=P;

and by Assumption 8 we have that | ZP k2 TM(Z)(Q (x;'f_H — M;(x})))w;| < by.
Thus Proposition 9 follows. O

We now derive upper bounds in a series of lemmas.

LeEMMA 10. Under Assumption 7, for each 1 <i <d, P, +1<j <P, +k, and
p=P,—1,P;, we have that |[LY (z},_,2%)|r < OF 7 and | L (z5)|r < O3,
where C, > 1 is a constant independent of d.

Proof. For 0 <i<dand P, <j < P;y; — 1, define
Fy; = VM;(x}) — QVa, (V" M;(z})B] R~ (y; — B;x})),

and for 0 <i<dand P,+1<j < Py1—1, define

Gij = QVa, (VTM;()Q7 ! (¢ — Mj_i(z5_y)))
Kij = —QV " M;(@5)Q ' VM, (] ).

Also define

Gio = QVao (VT Mo(25)Qp" (x5 — xB)) -
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Then for any 1 <i < dand P;+1 < j < P, +k, from optimality recursions (2.7) and

the chain rule, the recursion of Lgpi) and LEPi_l) can be written as
(3.8) L(g_m _ [Fm_l +Gij Ki,j_l} ¥,
sz1)1 Iy 0 Ly:)z ;

where p = P;, P, — 1. For the initial shooting interval, the recursion runs through
2 < j < P and p = 0. From (2.5), the initialization of the recursion for the initial
shooting interval is

3.9 ol =
.9) fol =",

For the other shooting intervals 1 <4 < d, from (2.6), the recursion is initialized by

LV m lLﬁfi’ _ H
Y O *

(Bi-1) (P
Lp1’) I; Lp~y
Now we give upper bounds for the propagation matrices. For some J x 1 vector v(x;),
by differentiating both sides of v(x}) = VT M;(x%)V~"M;(2})v(x}) and using (3.5),

J
we have that

(3.10)

Vo, (VI My(z)u(ah)) = —V T M; () M (VT M (a])o(a?))

(3.11) ! o ) . !
+ VT M(z7)Vo(x;).

Now we can give bounds to each part involved in the propagation. By (3.11),
Assumption 7, and (3.6), we have that
(3.12a) ||Va, (V™" M;(a})Bf R (y; — B;jz})) |Ir
_ % 2 — * — *

<[V M) MP (VT M () B R (y; - Bya))) |le

+ V"I M;(23)B] R Bj|lr < CoA%bo||R™ || #(Ca 4 boCh) + ABF| R ||
(3.12b) [V (V™ Mo(2)Q5" (25 — 25)) l|r

< IV Mo () My? (V" Mo(a3)Qp' (a5 — x5)) ||

+ VT Mo(23)Q5 | < 2C0A% Q5 |FC1 + AlQR |
(3.12¢) [|Va, (VTIM;(2))Q7 (¢ — Mj—1(25_1))) |r

< IV My () MP (VT M () Q7 (f — My—1(=%_y)) e
+ VT M (23)Q |k < CoA2|Q | (Cy +mo) + AQ |-

We then have that

(3.12a)
IFillr < A+1Qlr (CoA®bol|R™|#(Co + boCh) + Ab| R r) := F,

(3.12¢)
1Gijllr < 1QlF (CoA?|Q ™ F(Cr + mo) + AQ™H|F) == G,
1Kijlr < A2QIrlQ = K,

(3.12b)
IGrollr < 1QF (2CoA%|Q5 | rCr + AllQE'|F) = Go.
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Let G = max (G1,Gg). Then, bounding each term in the propagation relations
(3.8), (3.9), and (3.10) by its Frobenius norm, we have for 1 <i <d, P,+1<j <
P+ k,and p= P, — 1, P, that

L(_P)
prjl

<(VI+E +(F+ G)2)jfpi VI< (VITRT+(F+GP)

v,

HL;p)HF < < H |:Fi,j71 +Gij1 Ki,j—1:|

Iy 0

’ F

F F

Jj—Pi+1

P+l
= Ci— Pt

and for the initial shooting interval, similarly we have for 1 < j < P; that

I r < (\/J—&—K? + (F—&—G)?)] VI+(F+G)? < (\/J+K2 +(F+G>2)J =G0

LEMMA 11. Under Assumptions 7 and 8 and using the notation in Definition
1(d), for each 1 < i < d we have that ||Jo(zg)||F, | Ji(xp, 1, 2p )|lF < Cy for some
Cy > 0 independent of d.

Proof. Because of the block tridiagonal structure of J; for 0 < ¢ < d, we have
that

Pi+171

1ille < D (IVay 1 05llr + IV, 05l + Ve 1,651 )
j=P;+1

+||V£Piﬂpi”F + ||vai+19Pi||F + ||vzpi+1—19P7‘,+1||F + vaCPiJrl O‘P1+1||F

(3.7) Piiq1—-1

<Y CARTE IR E + ANQ T e + B3R e + br)
j=P;i+1

+24]1Q7 lr + Q7 lr + A%NQ™ I r + G Rl + i
< kQAIQTHIF +1Q7 I + AXQ 7 Ip + Gl R | + b)
= CJ.

PROPOSITION 12. For any w € RV and |w| = 1, we have wT V2L z(x*, \*,
v* ww < Uy for some Uy > 0 independent of d.

Proof. For 0 < i < d, using Lemmas 10 and 11 and referring to Definition 1, we
have that [|J;||#[|As[|3 < 2(k + 1)C;C2*. Then, from (3.2), it follows that

d d
wT V2L A(z*, N, %, pw = Z Wy AT JiNiad; + MZ l|w; — Li—1i—1 ||
i=0

=1
T
+ (Lg\fdil)ﬂ&d + Ls\fd)wgd+1) B%R_lBN (Lg\fdil)w2d + Lg\fd)wgd+1)
< 2(k +1)CsC3F + BRI CYF + n(1 +205)%.

Defining Uy, to be the last quantity above completes the proof. 0
We are now in a position to state and prove our main result.

THEOREM 13. Under Assumptions 6, 7, and 8, the condition number of the Hes-
sian matriz for the augmented Lagrangian is bounded above independent of the number
of shooting intervals, d. That is,

Uk

VQL *’)\*7 *7 < i )
R( T A(x 1/1 N’)) (’Yk_bk;)mln(pk,l)
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Proof. For any w € R¥17 and |jw|| = 1, using Proposition 9 and Assumption
6(c), we have that

d d
wV2La(x* Nyt pw = ] AT Tibga; + > ||y — Lyt ||
=0 i=1

T
+<L§\I,Dd_l)w2d + Lg\l,)d)wzd+1) B%}R_lBN (L%Dd_l)ww + L%Jd)wngrl)

d d
> ZuA}iTAZTJZ‘Ai’Lf}i > (’yk — bk) Z HAZ"UA)Z‘HQ
=0 =0
Assumption 6 d 19 I )
= (w = be) { e D aall* + [0l | = (& — bx) min (g, 1).
=1

Combining this with Proposition 12, we obtain

Amaz (ViLA(SC*,)\*W*vﬂ)) < Uk
Amin (V2L A(z*, N, 0%, 1)) — (% — by) min (pg, 1)’

R(VaLa(a™, N 9", p) =

which completes the proof. ]

Discussion. An interpretation of Theorem 13 is that, under observability As-
sumption 6 and small nonlinearity Assumption 8, the condition number of the multiple
shooting problem is bounded above with the number of multiple shooting intervals d.
This prevents the exponential increase of the solution, which we define as instability,
and thus makes the multiple shooting problem computable. We note that the upper
bounds of the lemmas preceding Theorem 13 allow for exponential increase within the
shooting interval; but as long as observability holds, this increase stops at the end of
a shooting interval. As for Assumption 8, we note that the amount of nonlinearity
needs to be upper bounded by the lower bound ~; that is related to observability
by Lemma 4. This points out that the bound on nonlinearity in Assumption 8 is
not absolute; it only needs to be small compared with how much information can be
found in the observations. That is, increasing the measurement space would increase
the lower eigenvalue of Y BI R™1B; and thus 7, which in turn would increase the
prospects for Assumption 8 to hold.

Another important question is whether these assumptions are necessary. While an
“if and only if” statement between observability and the bounded condition number
of the multiple shooting Lagrangian probably does not hold, some of the assumptions
are necessary in the following way. As we can see from Appendix A, multiple shooting
without observations still results in exponential increase of the condition number and
thus of the solution. Therefore, some amount of observability, or, otherwise said,
state space coverage by data, is necessary. As we can see from Appendix B, without
multiple shooting, the condition number of the Hessian matrix for the single shooting
function (1.7) also increases exponentially and thus is unstable. We conclude that
some form of observability and multiple shooting is necessary to obtain a stability
result such as Theorem 13.

4. Recursive gradient evaluation. When implementing minimization of the
augmented Lagrangian function (3.1), gradient evaluation is required. In this section,
we describe a recursive method for computing the gradient of (3.1) that fits into our
memory-saving framework.
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First we derive the gradients of the augmented Lagrangian function. Note that
Hj(:?j_l,ij,ijﬂ) = 0 for all R +1 S j § Pi—l—l - ]., 0 S ) S d, and 90(3’]0,%1) =0.
For the first interval we obtain that

T ~ ~
vﬂ?oLA(Iv A, ,LL) = ngl) (vﬂcpl ¢P1—1(IP1—17IP1) + A1 — :U‘Cl(x))

4.1
U0 T 0 - uga(a)

For 1 <i<d—1, we obtain that
VacprlLA(&“,)\’%M)

P—1)T
= Lg:’zurl )

=1, %, mj+1) + v901:',,_*_1 ¢P1‘,+1*1(5L'P1‘,+1*17 mP7‘,+1>

_N\T L T
+ L(PI::»ID (Nit1 — peivi(z)) + Lia’f;f_)l (i1 — pgit1(z)) + pgi(x) — s

Pip1—1
p) T ~ . ~ ~
pri La(z, A\, p) = ngl*)l (W + VﬂipiJrl ¢Pi+1—1(xpi+1—17 mp@+1)>
0

P) T (Ps) T(

+Lp" Nipr —peiva () + Lp Yy (Yigr — pgiva(2)) + pei(x) — Xi + Bp (P, Tr41).

For the last shooting interval, we obtain that

=T %5, Ti41) +On(Tn_1,ZN)

=T, 25, T41) T On(TNn_1,ZN)

+ Bp, (TP, Tpy41) — Ad-

Note that the derivatives are composed of a matrix-vector product for which the
vector can be computed through one forward recursion similar to the one for the
(F’Ij;)l ’
recursion, and it turns out to be dense. The computation thus would require O(J?)
storage and inhibit the low-memory advantage of our approach. Instead, we compute
the matrix-vector product using a backward recursion separately on each multiple
shooting interval, as follows. Since the evaluation procedure is the same for each
interval, we illustrate our method with the first interval (assuming it has length N”).

The target of our algorithm is to compute vTLg\(,)2 for some constant vector wv.
This algorithm can then be used to compute the gradient components defined in the
beginning of this section. For example, for computing the first component (4.1) we
note that we have two such matrix-vector products, where N’ is successively P; and
P;—1 and v is successively (prl ¢p—1(Tp—1,Tp,) + M1 — per(z)) and (1 — pgi (z)).
Similar embeddings hold for all other gradient components.

The computation of UTLS\(,),) proceeds as follows. The optimality recursion states
that 6,(Z;_1(z0),Z;(20),Zj41(z0)) = 0 for 1 < j < N’ — 1. Differentiating with

states. The Jacobian matrix L however, needs to also be computed by forward
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respect to xg gives

J

0) _ —1 (0) (0)
(4.2) L) = (T 057 (T, 0L, + (90,05
Now we write the recursion ansatz and substitute (4.2) to obtain
UTLE\(I)’)—Z-&-l = CZTL(NO’)—I + blTLﬁ\(I)?—l—l = _clT(v"—"N’_l,eN/*lfl)_l(VZN’_I_QQN’*Zfl)L(NO’)—l—Q
(6 = el (Va0 (Vo O o)) Ly = el L9 + 000 L)

for 1 <1< N'—2, where ¢;11 and bjq for I =2,..., N’ —2 are defined by the sought
recursions

(4.3) 1 =b = (Vay 0n—1-1)" (Vap_,_ On—1-1),

bﬁl = _CIT(VIN’szN/*lfl)_l(VINuLfQ:eN’flfl)'

770 _ T (0)
Ly =cyi_1 Ly
—|—b%,71L(()0), where ¢n/_1 and bys_; are obtained through recursions (4.3) and (4.4).
It is a backward recursion with respect to the usage of state information x;. The

initial values for the recursion are

Then the matrix-vector product of interest can be expressed as v

C,{ = _UT(V$EVHN’—1)71(valfleN’—lm b,{ = _UT(vxﬁveN/_l)il(va’—zeNl_l)’

obtained by total differentiation of O/ _1(Zn/—2(20), Zn—1(x0), TN (20)) = 0.

Since the recursion can be computed separately on each shooting interval, the
total storage does not exceed the number of multiple shooting checkpoints plus the
length of an interval, which adds up to 2d+ 1+ N/(d + 1). We can use checkpointing
within the shooting interval to reduce the storage even further, but we do not pursue
that avenue here.

5. Numerical results. In this section, we apply our multiple shooting method
to Burgers’ equation in order to verify some of our theoretical findings. This is a
one-spatial-dimension, time-dependent, partial differential equation that exhibits both
diffusion and nonlinear advection. Since implementation of new ideas in an operational
environment is a development-intensive process, in many research references discussing
new state estimation methods, Burgers’ equation is considered an important first test
of a method [2, 15, 17, 28].

The partial differential equation describing it is the following;:

or 100 0%
ot 2 9y 0x?’

where v = 0.01 is the viscosity coefficient and (x,t) € (0,1) x (0,T).
We denote by z7" the unknown value at grid coordinates (jAx, mAt) and Ax =
1/J. We use a centered finite-difference discretization [2]:

m+1 m m \2 m \2
Ti T (@71)* — (@]1y) 4
6 T (Ax)z(x?‘ﬂl - 20 i) =0,

To demonstrate the benefits of multiple shooting, we choose parameters for which
the single shooting method in [1] exhibits instability. To make the problem closer
to the intended application target, we also experiment with larger model error and
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sparser observations, which are known to be more difficult [1]. We compare the
solution of the multiple shooting method with that obtained from directly minimizing
the full-memory function (1.3) in our examples. Note that the full-memory problem
itself is not without difficulties: it cannot be solved to high accuracy by L-BFGS in
any of our examples within 2,000 iterations. The norm of gradient of (1.3) decreases
slowly approaching the end and never gets below 107%. In this section, we refer to
the approach of minimizing the full-memory function as 4D-Var for brevity, although
our example is (1+1)D.

5.1. Results for Burgers’ equation. We choose Ay = 1/500, At = Ax/500,
background state xp = sin (7x), and background covariance @p = 0.011. We gen-
erate the initial state zo by sampling from the background distribution, namely,
zg ~ N(xzp,Qp). The rest of the states are generated by model propagation plus
a model error term, namely, 241 = M;(z;) +n; for 0 < j < N, where n; ~ N (0,Q)
and Q = (At)?diag(2,1,...,1,2) is the covariance of model error. This scaling results
in a standard deviation of about 1072 for the model error for z. We note that, in
our examples, the largest absolute value of x is around 1, so this makes the smallest
relative error to be around 0.1%. In a subsequent example in section 5.3, we take this
standard deviation to be 10~%. These are small values, but they were chosen to be
comparable to the corresponding examples in [1] so that we can compare the perfor-
mance of the method in this work to the one in [1]. In that initial work, instability was
a significant issue which led to choosing such small values, and indeed, that algorithm
blows up even for these examples. In section 5.2 we will present simulations for much
larger model errors with standard deviations of 3.2 x 1072, that is, at least a few
percents of the solution. The observations are generated by applying the observation
operator H(z;) = sin (z;) to the underlying states U = {xo, ...,z x} plus a mean zero
normal observation error term to mimic the action of a noisy nonlinear operator. The
operator H(-) = sin (+) reflects linear response around zero and saturation away from
zero (assuming a range for z; of no more than 7, which is true of the solution to the
target problem under our assumptions), which are characteristics of many sensors.
The shape of H(-) is not connected to that of the initial condition, which is chosen
to also be of the sin(-) type in order to be simple and consistent with the boundary
conditions. At the end of this subsection, we give one example of a different choice
of nonlinear observation operator but with similar linearity/saturation features, and
we show that the results obtained are similar. We note that for analytic simplic-
ity our theoretical results consider only the linear observation operator case; but we
expect the nonlinear one to be even harder, so we could use the results to validate
the outcome of multiple shooting. The covariance of observation error is chosen as
R =0.011. The observations are made with a gap of 10 steps in time and space.

Our aim is to minimize the augmented Lagrangian function (3.1). For achieving
our limited-memory purpose, we use L-BFGS [22] with p = 6 stored vectors. To obtain
an initial point for minimization, we first perturb the underlying state U by the error
of the background distribution. This mimics the situation where the estimation does
not start cold; in other words, initial estimates of the states do exist from previous
runs of the algorithm. On each shooting interval, we run the 4D-Var minimization
of (2.10) with L-BFGS for 200 iterations to get a “warm start” state {wo,...,wn}.
Note that 4D-Var is run only in the beginning separately on each interval on which
p trajectories are stored. The largest amount of memory required is then max{2d +
1+ dlﬂ, (p+ 1)d—ﬂ\:1} state vectors. We also note that applying L-BFGS to the 4D-Var
problem on the entire horizon requires (p+ 1) N state vectors, which is usually d times
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larger. We add that in this and in the other numerical sections, it proved difficult
to find another starting strategy that will reliably produce a point from which the
multiple shooting algorithm will converge. On the other hand, this strategy does work
and does not alter the storage reduction benefits of our approach.

The checkpoints of the warm start state {wg,wp,—1,wp,,...,wp,—1,wp,} are
then used as the initial point for minimizing (3.1). The Lagrangian multiplier and
penalty parameters are initially chosen as )\EO) =0, 1[)1(0) =0, 19 = 10 and are subject
to the usual Lagrange multiplier and penalty parameter updates [22, Framework 17.3].

TABLE 1
Number of checkpoint pairs d and mazimal storage for At = Ax/500.

N 800 1000 1200 1400 1600 2400
d 12 14 15 17 19 36
storage 434 469 525 546 560 455

ity T8%  67%  6.3% 56% 5.0% 2.7%

In Table 1 we tabulate the number of checkpoint pairs d, number of stored vectors,
and percentage of storage over full-memory storage for each of the examples in this
section. For N = 800, d = 12 is the smallest number of checkpoint pairs to make
the computation stable. For each 800 < N < 1600, the corresponding d is chosen so
that d/vN = 12/4/800. For N = 2400, d is chosen to satisfy d/N = 12/800. We
choose d o« N for N = 800 and 2400 to demonstrate that the method is stable for
increasing N and hence to verify Theorem 13. For 1000 < N < 1600, we choose
another relation d  v/N to demonstrate empirically the consequences of a more
aggressive checkpointing schedule.

Figure 1 compares the function value reduction of (3.1) at each iteration of L-
BFGS for increasing time horizon. For 800 < N < 1600, the rate of the initial
descent (before iteration 50) becomes smaller as N increases, which indicates slower
convergence for increasing N. This means that a more aggressive checkpoint schedule
(e.g., d o< V/N) can lead to slower convergence. In contrast, the rate of descent for
N = 2400 is closer to that of N = 800 and much larger than those of 1000 < N < 1600.
It indicates that the method not only is stable but converges with similar speed for
increasing N if d is allowed to increase linearly in V. Figure 2 shows the norm of the
gradient at each iteration. Figure 3 shows the Frobenius norm of constraints c;, g,
1 <i < d, at each iteration. Figure 4 plots the Euclidean distance scaled by Ax of
each iteration to the checkpoints of the full-memory 4D-Var solution. Note that the
distance is not scaled by the number of states and is expected to increase with d.

In this experiment, we see significant reduction (by 8-9 orders of magnitude)
for both the function value and the norm of gradient, even if the gradient did not
decrease to a point that triggered the Lagrange multiplier update. Figure 5 plots
the solution surface of multiple shooting and 4D-Var when N = 2400. Both of them
approach a perturbed version of the noise-free solution. The inviscid form (v = 0)
of Burgers’ equation exhibits development of shocks. In our example, we employ a
larger viscosity coeflicient v = 0.01 which smooths out the waves and acts against
the steepening effect of nonlinearity. Hence the solution surface of Burgers’ equation
in our setup (top left of Figure 5) does not exhibit such nonlinear effects. Figure 6
compares multiple shooting and 4D-Var solutions at fixed time and space nodes. Note
that the two solutions are both close to the underlying state so that the trajectories
overlap for most of the part. Although the problem is not solved to high accuracy as
suggested by the norm of the gradient and norm of the constraint, we conclude that
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From the simulations we see that keeping N/d fixed (at its lowest value) results
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in faster convergence compared with the alternatives. We thus conclude that the
statement of Theorem 13 is satisfied, although its conditions are stronger than the
case tested here (we did not enforce small nonlinearity and linearity of the observation
operator). However, for the case of smaller N (e.g., 800 to 1600), even increasing d
slower than linear in N (e.g., VN ) would give stable results and thus even more
memory savings at a cost of somewhat slower convergence.

To illustrate the effect of the observation mapping, we apply a different nonlinear
operator H;(xz;) =1/ (1 + e *)—1/2 which also exhibits linear response around zero
and saturation away from zero. For N = 800, d = 12, and all the other parameters
staying the same, Figures 7 and 8 show the function value reduction and the norm of
gradient of (3.1) at each iteration of L-BFGS. The performance is similar to applying
Hj(z;) = sin(z;), which is shown in Figures 1 and 2. Hence we conclude that the
effect of the choice of observation mapping appears to be small.

5.2. Larger model error. In this section, we experiment with increased model
error. We choose Ay = 1/500, At = Ax /1000, and a background covariance matrix
®@p = 0.011. The covariances for the model error and observation error are chosen
to be 10731. Observations are reduced to every 10 steps in time and every 100 steps
in space. To initialize the minimization of (3.1), we run the 4D-Var minimization on
one interval, and for the next interval we run 4D-Var constrained at the checkpoint
by the solution from the previous interval.

Figure 9 shows the augmented Lagrangian function value decrease for N = 500
and number of checkpoint pairs d = 38. Figure 10 shows the norm of the gradient.
Figure 11 compares the full-memory 4D-Var solution with that of multiple shooting.
Increased model error results in the rough surface of the underlying states plot in
Figure 11. Figure 12 compares the 4D-Var and multiple shooting solutions at fixed
time and space nodes. Note that the two solutions are close to each other so that
their trajectories overlap.

Both the function value and the norm of the gradient converge more slowly after
some significant initial progress. Since the norm of the gradient stalls and fails to
progress below 0.1, we do not observe either Lagrangian multiplier or penalty pa-
rameter update during the experiments. However, both the function value and the
norm of the gradient achieve a 4 to 6 orders of magnitude decrease, and the mul-
tiple shooting solution approaches reasonably well the full-memory 4D-Var solution.
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Clearly the problem has too much noise for the estimates to be close to the underlying
state. However, the approach does show that multiple shooting has a performance
comparable to that of 4D-Var, with much less memory, and that is the goal of this
paper.

With the same parameters as those in [1, section 5.2.5] but with a much longer
horizon, N = 500 as opposed to N = 110, our method is able to produce iterations of
moderate size, make nontrivial progress through minimization, and result in solutions
comparable to that of the full-memory method for a longer time horizon. Counting
the storage during warm start, gradient evaluation, and stored vectors of L-BFGS,
the maximal number of states stored at any time of the algorithm is 91 and is about
18.2% of the total number of states N. The storage used by multiple shooting is 2.6%
of the memory used by full-memory minimization using L-BFGS with 6 vectors.

5.3. Sparser observations. In this section, we consider the case where ob-
servations are sparser in both time and space. As in [1, section 5.2.5], we choose
Ay = 1/700, At = Ax/34, and background covariance as Qp = 1073I. In par-
ticular, the much larger time step tests the ability of the approach to cope with
increased instability. The covariance matrix for the model error and observation er-
ror is Q = 10787 and 0.011, respectively. Observations are made every 30 steps in
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time and every 200 steps in space. The initial point for multiple shooting is the same
warm-start point described in the preceding section. The parameters are the same as
those in [1, section 5.2.5] but with a longer horizon. We take N = 300 as opposed to
N =32 1in [1], and we take the number of checkpoint pairs d = 30. We note that this
setup is significantly far from satisfying the observability condition. Indeed, the rank
of the observability matrix in Definition 3 cannot be larger than 8, whereas Theorem
13 required a full rank, that is, 701.

For this experiment, Figure 13 shows the decrease of function value (3.1). Only
the first 30 iterations are plotted since the function value stalls afterward. Lagrangian
multipliers are updated at iterations 80 and 230, as shown by the vertical reference
line in Figure 14. Figure 15 shows the norm of constraints ¢; and g; at each iteration.
The horizontal reference line plotted is the norm of constraint for the 4D-Var solution.
Figure 16 shows the Euclidean distance of each iteration to the 4D-Var solution scaled
by Ax. The decrease in the norm of the gradient is significant (3—4 orders of magni-
tude), and the norm of the constraint is reduced by about 1 order of magnitude. The
distance to the 4D-Var solution shows little progress compared with the initial guess
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obtained by running 4D-Var on each shooting interval, but Figures 15 and 16 suggest
the reason is primarily that our warm-starting using 4D-Var on each shooting inter-
val produces an initial point for multiple shooting close to the 4D-Var solution itself.
On the other hand, even if in the distance to the 4D-Var solution there is not much
progress beyond the warm start, the gradient is significantly reduced, and we can eval-
uate the convergence properties of the method, running L-BGFS to detect whether we
see an improvement, while needing less memory than 4D-Var with L-BFGS (only 3.4%
of the latter’s). Therefore, the multiple shooting method provides an improvement
over 4D-Var with L-BFGS in terms of memory and over single shooting in terms of
stability even in this case, which is significantly outside the applicability of Theorem
13.

6. Conclusions. Determining the best state estimation for dynamical systems
with model error raises new challenges in developing algorithms that reduce storage
while maintaining stability. The reason is that, as opposed to the strongly constrained
setups where only the initial state is free, all the states of a trajectory contribute to
the number of degrees of freedom.

We present an approach where the number of degrees of freedom is reduced by
the optimality conditions, as we previously introduced in [1], but now coupled with a
multiple shooting approach in an augmented Lagrangian framework to improve sta-
bility. The multiple shooting approach can use a reverse recursion scheme on each
shooting interval to ensure that the memory requirements for computing one gradient
of the augmented Lagrangian never exceed 2d + 1 + di-',-l state vectors, where d + 1 is
the number of shooting intervals and N is the length of the horizon. The full-memory
data assimilation method, on the other hand, needs to store N + 1 state vectors when
evaluating its gradient. We prove in Theorem 13 that under an observability assump-
tion and when the nonlinearity is small relative to the parameter characterizing the
observability, the condition number of the augmented Lagrangian matrix is bounded
above, irrespective of the number of shooting intervals. This ensures that the multi-
ple shooting approach is stable: the method does not exhibit exponentially increasing
error for an increasing size of the assimilation interval. This is a feature not shared
by the single shooting approach derived from [1]. Moreover, as pointed out in the
discussion following Theorem 13 and Appendix A, multiple shooting without obser-
vations still results in exponential increase of the condition number and thus of the
solution. Therefore, both multiple shooting and sufficiently informative observations
appear to be necessary for stability to occur.

Our numerical simulations on cases described in [1] validate these points. First,
for all of them the single shooting method showed an exponential increase of the
solution and ran into overflow. For both small model error and larger model error
setups, the multiple shooting approach converges to a solution close to that of the
full-memory method while using only a fraction of the memory needed by the latter—
never more than 8%. To achieve convergence, we needed to use the full-memory
approach, but only on the smaller, shooting intervals to create a good initial point for
our multiple shooting approach. In the case of sparse observations, this initialization
strategy was responsible for much of the improvement of the method in terms of
distance to the full-memory 4D-Var solution, while using only 3.4% of the memory of
the latter. But with that initialization strategy, which does not alter our maximum
memory count, we reliably obtained reductions in the augmented Lagrangian gradients
and solutions close to the ones of the full-memory approach. We are not aware of
another optimization-based approach to reducing the memory requirements of weakly
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constrained data assimilation approaches. From the numerical experiments and the
theory, we conclude that, particularly in the data-rich case, the multiple shooting
method appears promising at reducing memory and producing a point of a quality
comparable to that of the full-memory case without the instability of the previous
single shooting approach.

We plan to explore new initialization strategies that empirically appear to be
important for the robustness of the overall method. The method also has good poten-
tial for parallelism, although in that case the memory saving is less of a benefit. An
interesting question would be to tie the stability of multiple shooting to a condition
requiring enough information in the observations but weaker than observability on
one shooting interval. We have observed the good behavior of the multiple shooting
approach in several such instances, but it is unclear how such a condition might be
expressive enough and practical.

Appendix A. Multiple shooting with zero observability. In this section,
we prove that for a class of linear systems, under zero observability, the condition
number of the Hessian matrix of the augmented Lagrangian has an exponential lower
bound. Hence the multiple shooting method is not stable if there are no observations.

We consider the model propagation mapping to be time independent, that is,
M(z;) = Azj, and B; = 0 for 0 < j < N. We assume A has at least one real
eigenvalue with modulus strictly larger than 1. With this model specification, J; are
identical for all 1 < i < d and so are A;. For simplicity, we denote them, respectively,
as Jy and A; for 1 < i < d. The expanded forms of J; and A; are

[ATQ™IA  —ATQ! 0 T
*QilA ATQflA + Qfl
Jl = 9
- ATQflA + Qfl 7ATQ71
L O -Q'A Q' ]
i 0 I
—QATTQT'A  A+QATTQ!

Ay = . .

P7 -
Tp,_1,Tp;) Lgai+)1($Prla$Pz‘)

L(Pi—l)(

o i+1

For p = P;, P, — 1, adapting the optimality recursions (2.7) to the linear system under

consideration and applying the chain rule, we have that the recursion of Lgl_ j

0<j<k-—1is

for

_ QA—TQ—lAL(P)

(A.l) L(P) — (A + QA—TQ—l)L(P) Pori 1

Pi+j+1 — Pi+j
Denote L; to be the last two block rows of Aj.
LEMMA 14. Denote A = Ay[L]. Then, J1A = 0.

Proof. We first prove that for 1 < j < k, the jth block of A is (A)j = A by
induction. It is evident for j = 1,2. Suppose it is true for all j < jg, 2 < jo < k — 1.
Then by recursion (A.1),

A (Pi—1) (P:)
(A)jo+1 =Lp/y;, +Lpl; A
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= (A+QATTQ LYY + LT 4)

P;+jo—1
_ _ Pi—1 P;
— (QATTQT ALY + L, 0 A)
= (A + QA_TQ_l)(A)jO - (QA_TQ_lA)(A)jO*l
— AJot+1l
A direct multiplication completes the proof. ]

PROPOSITION 15. Let |A| > 1, A € R, be an eigenvalue of A. Denote A\, = \F~1.
Then, for the linear system under consideration, we have that

/\min e
K<viLA<x*’)‘*71/}*7M)) > '26213)|)\k|2(d—1)-

Proof. For any s = (s1,...,80q41) € RZHD7 denote 89 = s1, §; = (52, 52i41)
for 1 <4 < d. Then from Theorem 2(b) we have that

d
(A2)  $TVILa(a*, N 0%, p)s = sTAS Johost + > 8T AT 1AL S

i=1
d
+ ,UH§1 - L081||2 + MZ ||§Z — L1§i,1H2.
i—2
Consider 5 = (s1,...,824+1) € R4V such that s; = 0, so; = Ay 's2, 5941 =

Asg; for 1 <4 < d, and let ||s2]| = 1 be the eigenvector of A corresponding to A, that
is, Asy = Asy. Then §; = [i]s% for 1 <1 < d, which gives that

(A3) §ZTA{J1A1§Z = S%;/A\TJlASQZ‘ = 0,

where the last equality follows from Lemma 14.
Since Ly consists of the last two block rows of Ay, we have that L[ 1] = [AZ: ]
Hence by the definition of s for 2 < i < d, we obtain that

. . I Ak‘—l
(A4) 8; — L1381 = {A} S2i — [ Ak ] 52(i-1) = 0.

Using (A.3) and (A.4) in (A.2), we obtain that
sTVELa(x*, N0 w)s = pll31]1 < p(llsol® + [AP[Is2l”) = p(1 + M%)
From the definition of s, we have that
d d _
Isll® =" llsaall® + llsaiea]* = (L4 AP D AP > (14 AP AP0
i=1 i=1
Hence we have that

STVE:LA(J"*7 )‘*7 ¢*7 /’[’)S
s[>

< ,u|)\k|—2(d—1).

)\min ViL *7A*a *a S
(A5) (ViLa(z V1)
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On the other hand, let t = (t1,...,taqy1) € RZ4TDY be such that ||t;|| = 1 and t; =0
for all 2 < i < 2d+ 1. Jy differs from J; by only the (1,1)th block element so that

(JO)(l,l) = (Jl)(l,l) + le Then
tIN2La(z, X, )t = tTAT JoAoty + utT LT Loty
> tlTAoTJvotl > )\mm(Qél)~

Hence we have that

tTV2 L4 (%, A%, 0%, )t
)\max VE;LA x*ﬂA*7w*7M Z £ d ’ :
(A.6) (Valal ) Tk

Combining (A.5) and (A.6) completes the proof. d

Appendix B. Single shooting condition number. In this section, we prove
that for a certain class of linear systems that satisfy the observability condition, the
condition number of the Hessian matrix for the single shooting function (1.7) has an
exponential lower bound in N. Hence the single shooting method is not stable for
this class of systems.

We consider linear time-independent systems such that M (z;) = Ax; and H(z;) =
Bz;. Denote C; = QA™TQ ' + A+ QA "BTR™'B and Cy = QA TQZ' + A+
QA~TBTR™'B. We have the following.

PROPOSITION 16. For linear systems satisfying

(a) 0102 —I= 022,

(b) there exist eigenvalues A1 and Az of Co such that |A\1] > 1 and |A1] > [A2] # 0,
() QATQ1A=1I,.

We have N
. olnu* Y M| > 1
/@(VQ F(xé)) > NiX ’ 2=
o ) ¢y, 2v-1)
N|)\1| s |)\2| < 1,

for some constant C > 0, where x is the first component of a local minimizer of
F(-IO:N) (13)

Note. At the end of this section, we give an example of a linear system satisfy-
ing conditions (a)—(c) with observation matrix B being full rank, namely, with full
observability.

Proof. Tt is shown in [1, Theorem 3] that z is a local minimizer of I'(z() and
that

. N-1 T T
(B.1) VaoI'(xh) = bo(xf, A) + > L 0,001, 07, A1) + LY On(Av—1,An),

j=1

where L;O), 0 <j < N, are as defined in Definition 1(b).
Applying the chain rule and the optimality conditions (1.4), (1.5), and (1.6) to
(B.1), we obtain that the Hessian matrix for the single shooting function (1.7) is

(B.2) V2 D(ay) = ATJA,,
where Ag is (N + 1)J x J dimensional and Js is (N 4+ 1)J x (N + 1)J dimensional.
They are defined as

T T T
A 7 L§v>}7

T _ 0
As_ Lg



3328 WANTING XU AND MIHAI ANITESCU

[Qz' + BTRT'B+ ATQ'A  —ATQ™! 0
—Q'A Cs+ATQ 1A

Cy+ATQ™LA —ATQ™!
0 QA Oy

©),
where C5 := Q71 + BTR™'B. Denote d;(z) = [LL(O) | for 1 < j < N. Then, for

1< j <N —1, from the recursion for the derivativejb (3.8) and (3.9), we have that

QA TQ '+ A+ QA TBTR'B —QATQ'A
dnte) = (PO TATE o 4
[QATQ '+ A+ QA TBTR'B —I;
= T d](x)
L J 0
c, —I
= _IJl OJ} dj(z) := Dd;(x)

and
ATBTR1B+ A AT
dy(z) = {Q R- B +Q Q]
J
C. ~
:ijzzch.

For any eigenvector v of Cy with corresponding eigenvalue A, we have from condi-
tion (a) that Ddy(v) = Ady(v). Hence for 1 < j < N, we have that d;(v) = M ~1d; (v).
Denoting Q = (I, —A)TQ~1(I,—A) and using (B.2), we have that

U*Viof‘(xf;)v =v*ATJ A
N
=v"Qz'v+ > (LY v)* BTRTB(Lv)
=0

2

0 0 * )— 0 0
+ (L( )lv - AL; )v) Q 1(Lg-Jr)lv — AL§ )v)
3=0

N N
= 0*Qplv + Z yBTRB(Lv) + 3 dj(v)*Qd; (v)
j=1
Z

L(O) *BT R~ IB(L(O) )+U*CTQC2'UZ|>\‘2(] 1)
j=0 j=1

=v"Qp Lo+

where CTQCy = (Qz' + BTR'B)TA1QAT(Q3! + BTR™'B) is positive definite.
Let v; and vy be eigenvectors of Cy corresponding, respectively, to A\; and A\ as
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defined in condition (b), and |[v1]| = 1, ||vz]] = 1. Then we have

vi V2 T(@h)v

)\mam(v
[0 ]2

2 0(5) =
_ N

> 0105 QChu1 Y [A PV
j=1

C«Q)\)\l |2(N71)

> A

min ( > 2T
and

w3 V2 T(@5)v

)\mm(Vchf(xS)) < [|lva||?

N
< Amaa(Q5") + Amar(BTRTIB) [y (v2)[|* Y~ [Xo[?0 7

Jj=1

N
(B4) + Amaz(BTR_lB) + v;ézT@Cva2 Z |)\2|2(j—1)
j=1

N
<2U+2U Y AU
j=1

- AUN | \p|PN=1) Ao > 1,
~ |4UN, Aa| < 1,

where
U = Imax ()\maa: (Q§1)7 )\maw(BTR_lB))\max(égé2)7 )\maw(BTR_lB)y )\maw(CA’QTQVCQ))

Inequalities (B.3) and (B.4) give that

: Anen (07 GC3) [y [V M| > 1
K (vgor(x;)) > ¢ o : > 1,
mm4U2}V 2 |)\1|2(N—1)7 |)\2| < 1.
A
Letting C' = W completes the proof. 0

Consider an example for which Q = A = diag(2,1,...,1) for all0 < j < N — 1,
Qp = diag(4, %, cee %), and BTR™'B = diag(g, %, cee %) such that B is full rank.
Then, C; = diag(%, ?O, cee 13—0) and Cy = diag(4,3,...,3) so that all three conditions
in Proposition 16 are satisfied. For this example, even with full observability, single
shooting is not stable.
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