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Maximum Likelihood Estimation for a Smooth Gaussian Random Field Model∗

Wanting Xu† and Michael L. Stein†

Abstract. Gaussian processes are commonly used for modeling the output of deterministic computer models.
We consider the behavior of maximum likelihood estimators (MLEs) of parameters of the commonly
used squared exponential covariance function when the computer model has some simple deter-
ministic form. We prove that for regularly spaced observations on the line, the MLE of the scale
parameter converges to zero if the computer model is a constant function and diverges to infinity
for linear functions. When observing successive derivatives of a pth order monomial at zero, we
find the asymptotic orders of the MLE of the scale parameter for all p ≥ 0. For some commonly
used test functions, we compare the MLE with cross validation in a prediction problem and explore
the joint estimation of range and scale parameters. The correlation matrix is nearly numerically
singular even when the sample size is moderate. To overcome numerical difficulties, we perform
exact computation by making use of exact results for the correlation matrix and restricting ourselves
to parameter values and test functions that yield rational correlations and function values at the
observation locations. We also consider the common approach of including a nugget effect to deal
with the numerical difficulties, and explore its consequences on model fitting and prediction.
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1. Introduction. Computer experiments have been used extensively in investigating com-
plex scientific phenomena. The responses of many computer experiments are deterministic,
in the sense that rerunning the same code with the same inputs will give identical outputs.
Often, each run of the code is computationally expensive, so a common alternative to running
the code at all input values of interest is to run the code at some inputs and make cheaper
predictions at others. [25] and [26] propose to model the deterministic computer experiment
outputs as a realization of a Gaussian random field with covariance

Cov (f(x), f(y)) = θ0

d∏
u=1

e−
|xu−yu|γ

θu ,(1.1)

where xu, yu ∈ [0, 1], u = 1, . . . , d, θ0 > 0 is the scale parameter, and the θu > 0 are range
parameters. The use of stochastic models provides a statistical basis for experimental design,
parameter estimation, interpolation, and uncertainty calibration.
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When γ = 2, the Gaussian process with covariance function (1.1) is infinitely mean square
differentiable and thus is an attractive choice when the output surface is known to be smooth
[11, 21, 22, 27, 29]. This covariance function is sometimes called “Gaussian” because of
its functional form, but we prefer the name “squared exponential” to avoid confusion with a
Gaussian process. In fact, smooth test functions composed of elementary functions (e.g., poly-
nomials, trigonometric functions, and exponential functions) are often used as test cases for
studying the effectiveness of Gaussian processes in modeling computer experiments. However,
little is known about properties of maximum likelihood estimators (MLEs) when observations
are generated by these test functions. In this article, we are interested in the asymptotic;
properties of the MLE when more and more observations are taken on a fixed domain (fixed
domain asymptotics; see [28]) for the Gaussian process when the computer model is some
simple deterministic function. We aim to understand the implications of modeling smooth
deterministic functions using the squared exponential covariance function.

We consider a mean zero Gaussian random field with covariance function (1.1) and γ = 2.
For d = 1, we prove some asymptotic properties of the MLE for the scale parameter θ0
when the range parameter θ1 is fixed and the computer experiment response is a pth order
monomial f(x) = xp. We consider two situations for the observations. In the first case,
observations z are taken on a regular grid on [0, 1] so that z = (f( 1

n), f( 2
n), . . . , f(1))T . In

the second case, the observations are successive derivatives of the response function at zero,
namely, z = (f(0), f (1)(0), . . . , f (n−1)(0))T . Automatic differentiation (AD) techniques [14]
can be used to obtain derivatives of computer model output and there are certain problems
for which higher order derivatives are needed [7, 13, 30]. Therefore considering what happens
when one observes successive derivatives at a single location may be of some practical interest.

The rest of the article is organized as follows. Section 2 deals with regularly spaced
observations on [0, 1]. The key finding is that the asymptotic order of the MLE θ̂0 is n−1/2

when p = 0 and at least n1/2 when p = 1. In particular, θ̂0 → 0 when p = 0 and θ̂0 →∞ when
p = 1. Section 3 deals with the case where observations are derivatives at zero. An exact
expression for the inverse Cholesky factor for the correlation matrix is obtained. For all p ≥ 0,
we prove that limn→∞ n

1/2−pθ̂0 exists and is positive so that θ̂0 → 0 for p = 0 and θ̂0 → ∞
for all p ≥ 1. Section 4 demonstrates the theoretical findings in sections 2 and 3, and explores
numerically three commonly used two-dimensional test functions in the computer experiments
literature. For estimating the scale parameter θ0 and the two range parameters θ1 and θ2, we
compare the maximum likelihood method with leave-one-out cross validation in a prediction
problem. We find that the likelihood method and cross validation perform differently for
different test functions in terms of magnitude and calibration of prediction errors. We also
explore the MLE of the range parameter for pth order monomials when treating both scale
and range parameters as unknown, and investigate its implications for practical test functions.
In the numerical experiments, to deal with numerical singularity of the correlation matrix,
we choose parameters such that the correlation matrix and observations are both rational,
and do symbolic computation with Mathematica [31] to obtain exact results. Since a common
approach to overcome the near singularity is to include a nugget effect, we investigate the effect
of adding a nugget on the likelihood and prediction. We found that the likelihood generally
decreases substantially with even a very small nugget, but prediction error can sometimes
decrease a bit at first as the nugget size increases. All proofs of the theoretical results are
presented in the appendix.
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2. Regularly spaced observations. In this section, we consider the observations as outputs
of the model function f(x) = xp regularly spaced on [0, 1]. Fixing the range parameter θ1, we
prove that θ̂0 → 0 when the model function is constant and θ̂0 →∞ when it is linear. Though
some intermediate steps apply to all p ≥ 0, we are only able to derive the asymptotic order
and a lower bound on the asymptotic order for p = 0 and p = 1, respectively.

The observations are outputs of the model function f(x) = xp taken on a regular grid on
[0, 1] so that z = (

(
1
n

)p
,
(
2
n

)p
, . . . , 1)T . The covariance matrix can be written as

Σ(θ0, θ1, n) = θ0R(θ1, n),(2.1)

where the (i, j)th element of R(θ1, n) is

R(θ1, n)ij = w(i−j)2 , w = e−1/(θ1n
2).(2.2)

[19] gives the exact form of the inverse of the Cholesky factor for R(θ1, n). Letting
R(θ1, n) = LLT , where L is the lower triangular Cholesky factor with positive diagonal ele-
ments, then

(L−1)ij =


(−w)i−j[i−1

j−1]w2∏i−1
k=1(1−w2k)1/2

, i ≥ j,

0, i < j,
(2.3)

where
[
k
m

]
q

is the q-binomial coefficient defined by[
k

m

]
q

=
(1− qk−m+1)(1− qk−m+2) . . . (1− qk)

(1− q)(1− q2) . . . (1− qm)

if 0 ≤ m ≤ k and 0 otherwise.
The log-likelihood function of θ0 is

2l(θ0) = −n log 2π − n log θ0 − log |R(θ1, n)| − 1

θ0
zTR(θ1, n)−1z

and the MLE of θ0 is

θ̂0 =
1

n
zTR(θ1, n)−1z.

With the form of L−1 in (2.3), the exact form of θ̂0 can be written as

θ̂0 =
1

n

n∑
i=1

(∑i
j=1(−w)i−j

[
i−1
j−1
]
w2
jp
)2

n2p
∏i−1
k=1(1− w2k)

.

For convenience we make the following notation for the rest of this article:

aip(w) :=

(∑i
j=1(−w)i−j

[
i−1
j−1
]
w2
jp
)2

n2p
∏i−1
k=1(1− w2k)

,(2.4)

where p ≥ 0 and i ≥ 1. Note that θ̂0 = 1
n

∑n
i=1 aip(w) for w = e−1/(θ1n

2).

By considering the limit of the summand of θ̂0, we obtain the following proposition.
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Proposition 2.1. Denote

lip := lim
n→∞

aip(w) = lim
n→∞

(∑i
j=1(−w)i−j

[
i−1
j−1
]
w2
jp
)2

n2p
∏i−1
k=1(1− w2k)

then

lip =


(i−1)!θp1

2i−1( i−p−1
2

!)
2 , i− p odd,

0, i− p even,
(2.5)

where w = e−1/(θ1n
2), p ≥ 0, and i > p.

Proof. See section A.1.

Lemma 2.2. 1
n

∑n
i=p+1 lip ∼

np−
1
2 θp1√

2π2p(p+ 1
2
)

as n→∞.

Proof. See section A.2.

The previous results deal with the general case where p ≥ 0. The following results con-
centrate on p = 0 and p = 1. We now derive the asymptotic order for θ̂0 when p = 0 and a
lower bound on the asymptotic order for θ̂0 when p = 1.

Theorem 2.3. If p = 0, θ̂0 ∼
√

2
π

1√
n

as n→∞.

Proof. See section A.3.

Theorem 2.4. If p = 1,

lim inf
n→∞

θ̂0√
n
≥ θ1

3
√

2π
.

Proof. See section A.4.

The difficulty of the proof lies in the fact that the dimension and elements of the correlation
matrix R(θ1, n) change with n. In particular, we cannot simply apply an elementwise limit
theorem to θ̂0 = zTR(θ1, n)−1z/n. Proposition 2.1 proves the limits of aip(w) for fixed i as
n→∞ and Lemma 2.2 proves the asymptotic order of the average of those limits. However,
to derive the asymptotic order of θ̂0 = 1

n

∑n
i=1 aip(w) we would need to have some results on

the uniform convergence of aip(w) for 1 ≤ i ≤ n, which we have been unable to obtain.

We now state a conjecture about the asymptotic order of θ̂0 for general p ≥ 0. The case
for p = 0 is proved in Theorem 2.3 with C(0) =

√
2/π, and Theorem 2.4 is a weaker version

of the conjecture when p = 1.

Conjecture 2.5. For all p ≥ 0, limn→∞ n
1/2−pθ̂0 = C(p), where C(p) = θp1/

√
2π2p(p+1/2).

It might also be of interest to consider functions that are continuous but have some form
of singularities. These functions are not smooth and hence not the main focus of our work.
However, we present one example here to illustrate what can happen.

Proposition 2.6. If

f(x) =

{
0, x ≤ 1/2,

g(x− 1/2), x > 1/2,
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for some continuous function g(x) satisfying g(0) = 0 and c := limx→0
g(x)
xp > 0 for some

p ≥ 1, then

lim inf
n→∞

θ̂0
n
> 0

as n→∞. In particular, θ̂0 →∞ as n→∞.

Proof. See section A.5.

We recognize that fixing the range parameter as we have done here is rather artificial, but
the mathematical difficulties of analyzing even this problem are formidable and we believe
that the resulting asymptotic theory is interesting and informative despite its limitations.
As shown in [28, pp. 120-121], two nonidentical squared exponential covariance functions for
a Gaussian process on a finite interval correspond to orthogonal measures, suggesting that,
unlike the case for Matérn covariance functions [32], it might be possible to estimate both
the scale and range parameters consistently based on fixed domain asymptotics if in fact the
Gaussian process model is correct (see, for example, [1]). In the present setting when the
process is just a simple deterministic function, it is not at all clear what should happen, so we
investigate the properties of joint estimates of scale and range parameters through numerical
experiments in section 4.

We do not have an intuitive explanation for the quantitative aspects of our asymptotic
results, even for p = 0. Comparing this to two settings for which asymptotic calculations
can be easily done provides us with a clue to the qualitative behavior of θ̂0 as p increases.
If Σ = θ0In, where In is the n × n identity matrix, and f is a continuous function on [0, 1],
then θ̂0 ∼

∫ 1
0 f(x)2 dx as n→∞, so θ̂0 tends to a nonzero constant for any nontrivial f . For

the exponential covariance function (γ = 1 and d = 1 in (1.1)), if f has a bounded second
derivative on [0, 1] then

(2.6) θ̂0 ∼
1

n
f(0)2 +

1

2θ1n

∫ 1

0

{
f(x) + θ1f

′(x)
}2
dx

as n → ∞ (see section A.6), so that nθ̂0 tends to a positive finite constant as n → ∞
when f(x) = xp for any nonnegative integer p. These results are in stark contrast to what
we have proven and conjectured here for the squared exponential covariance function, that
n1/2−pθ̂0 tends to a positive, finite constant. Thus, there must be something about the squared
exponential model that makes us think θ0, the variance of the process, is large when p is large.
A possible intuitive explanation for this result is that if we think the underlying function is
very smooth (which is the case when we use the squared exponential model) and we observe
that the function just happens to equal xp at n densely spaced points, then we will conclude
that this function must at least very nearly equal xp over some broad interval, so that the
larger p is, the more we think the function varies over this broad interval and the larger we
think θ0 is.

3. Derivatives at zero. We obtain the asymptotic order of θ̂0 when the observations are
the first n − 1 derivatives at 0 for the response function f(x) = xp, p ≥ 0. Denote z =
(f(0), f ′(0), . . . , f (n−1)(0))T , and the covariance matrix of the observations z as Σ1(θ0, θ1, n).

Now we introduce a notation that is frequently used in the rest of this section.
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Definition 3.1. For a positive integer m, define the double factorial of m as

m!! =

{∏m/2
k=1(2k) = m(m− 2) . . . 2, m even,∏(m+1)/2
k=1 (2k − 1) = m(m− 2) . . . 1, m odd,

and set 0!! = 1. This double factorial notation is commonly used in combinatorics [12]. Note
that m!! is the product of all positive integers no larger than and having the same parity as
m, which is different from the successive factorial (m!)!.

As before, f is modeled as a stationary Gaussian random field with covariance function
K(u) = θ0e

−u2/θ1 . Then the (i, j)th element of Σ1(θ0, θ1, n) can be computed as

Σ1(θ0, θ1, n)ij =
∂i+j−2

∂xi−1∂yj−1
K(x− y)

∣∣∣
x=y=0

= (−1)j−1θ0
di+j−2

dui+j−2
e−u

2/θ1
∣∣∣
u=0

= θ0θ
− i+j−2

2
1 (−1)i−1Hi+j−2,

where

Hm =

{
0, m odd,

(−2)
m
2 (m− 1)!!, m even,

is mth order Hermite polynomial at 0. The mth order Hermite polynomial is defined as

Hm(x) = (−1)mex
2 dm

dxm
e−x

2
.

Defining R1(θ1, n) so that Σ1(θ0, θ1, n) = θ0R1(θ1, n), the MLE of θ0 is θ̂0 = 1
nz

TR1(θ1, n)−1z.
The following proposition gives an exact form of the reverse Cholesky factorization [17] of

R1(θ1, n)−1.

Proposition 3.2. Let D(θ1, n) be the lower triangular matrix with positive diagonal elements
such that R1(θ1, n)−1 = D(θ1, n)TD(θ1, n). Then for all 1 ≤ i, j ≤ n, the (i, j)th element
D(θ1, n)ij = dij, where

dij =


θ
j−1
2

1

√
(i−1)!

2
j−1
2 (j−1)!(i−j)

if i ≥ j, and i+ j is even,

0 otherwise.

(3.1)

Proof. See section A.7.

Note that dij depends only on i and j but not n. So the matrices D(θ1, n) are nested
as n increases. In fact, in this case R1(θ1, n) is nested and, in general, the reverse Cholesky
factors of inverses of a sequence of nested matrices are nested (see section A.8). This feature
simplifies the proof of the asymptotic order of θ̂0 for all p ≥ 0 and is not shared by the setting
considered in section 2.
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Theorem 3.3. Suppose f(x) = xp, p ≥ 0, then

θ̂0 ∼
np−

1
2 θp1√

2π2p(p+ 1
2)

as n→∞.

Proof. See section A.9.

AD can be used to obtain derivatives of functions coded as computer programs. AD
exploits the fact that function evaluation can be broken down into elementary operations
(e.g., addition, multiplication, exp(·)) and applies the chain rule. A comprehensive reference
for AD can be found in [14]. Although, in practice, only lower order derivatives are usually
found, there are efforts to obtain higher order Taylor coefficients in one direction for certain
problems [7, 13, 30].

For smooth functions, estimates based on multiple derivatives at zero should be closely
related to estimates based on observing more frequently on a fixed domain, since more ob-
servations enable the calculation of higher order finite differences that approximate deriva-
tives as the spacing gets small. More specifically, consider observing at k inputs zk =
(
(
1
n

)p
, . . . ,

(
k
n

)p
)T for some k ≤ n. For this case, MLE θ̂0(k) = 1

k

∑k
i=1 aip(w), where aip(w)

is defined in (2.4) and w = e−1/(θ1n
2), is the same as the MLE θ̂′0(k) when observing the

first k finite differences z′k at zero, since these first k finite differences at zero are a linear
transformation of the first k observations, namely, z′k = Czk for some C ∈ Rk×k. It follows

that θ̂′0(k) = 1
nz
′T
k

(
CRCT

)−1
z′k = 1

nzkR
−1zk = θ̂0(k). Fixing k and letting n → ∞ gives

that finite differences converge to derivatives and θ̂0(k) → 1
k

∑k
i=1 lip. The asymptotic order

of the limit 1
k

∑k
i=1 lip as k → ∞ is given by Lemma 2.2 and is exactly the same as what is

obtained in Theorem 3.3, which is the asymptotic order of the MLE when observations are
derivatives at zero. However, this heuristic argument does not directly imply θ̂0 has the same
asymptotics for the two situations of observations. In particular, taking k → ∞ at the same
time as n→∞ is a different and harder problem.

4. Numerical results. In this section, first we illustrate our theoretical findings in sections
2 and 3 numerically. Then we compare MLEs with leave-one-out cross validation (CV) in a
prediction problem for two commonly used test functions. We also show that for the Branin
function, the MLE for the range parameter along one coordinate does not appear to exist. The
parameters in the numerical experiments are chosen to make both the correlation matrix and
the observations rational so that the matrix calculations can be done exactly with symbolic
computations. A common approach to overcome the near singularity of the correlation matrix
is to include a small nugget effect in the hope of improving conditioning at the same time
introducing minimal modification to the matrix. We also investigate the effect of this approach
on the likelihood and prediction.

4.1. Asymptotic behavior of the MLE for the scale parameter. As in sections 2 and 3,
we consider the test function as a pth order monomial f(x) = xp and two situations for the
observations. In the first case, the observations z = (f( 1

n), f( 2
n), . . . , f(1))T are taken on a reg-

ular grid on [0, 1] and, in the second case, the observations z′ = (f(0), f (1)(0), . . . , f (n−1)(0))T
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Figure 1. θ̂0 when n = 2k, k = 3, . . . , 9, for z =
(f( 1

n
), f( 2

n
), . . . , f(1))T . The slopes of the reference

lines are the asymptotic orders p − 1/2 when p =
0, 1, 2, 3. Both axes are in log scale.

Figure 2. θ̂′0 when n = 2k, k = 3, . . . , 9, for
z′ = (f(0), f (1)(0), . . . , f (n−1)(0))T . The slopes of
the reference lines are the asymptotic orders p− 1/2
when p = 0, 1, 2, 3. Both axes are in log scale.

are the first n − 1 derivatives of the test function at zero. Denote the MLE of the scale pa-
rameter for the two situations of observations as θ̂0 and θ̂′0, respectively. We consider n = 2k,
k = 3, . . . , 9, and the range parameter θ1 ≈ 0.95 is chosen to make the correlation matrix
rational for all choices of n so that exact computations can be done. Note that exact com-
putation is needed here to prevent numerical overflow even if the exact form of the Cholesky
factor (2.3) is used.

Theorems 2.3 and 2.4 state that

lim
n→∞

θ̂0n
1/2−p =

√
2/π, p = 0, lim inf

n→∞
θ̂0n

1/2−p ≥ θ1/3
√

2π, p = 1.

Conjecture 2.5 in section 2 states that θ̂0n
1/2−p converges to some limit C(p) as n → ∞ for

all p ≥ 0. Figure 1 shows θ̂0 for increasing n when p = 0, 1, 2, 3 in log scale. Theorem 2.3 and
Conjecture 2.5 imply that (log n, log θ̂0) will be close to the reference line y = (p − 1/2)x +
logC(p) for n large. The numerical results show clear agreement with the theoretical results
in Theorem 2.3 and Conjecture 2.5. When observations are the first n− 1 derivatives at zero,
Theorem 3.3 states that

lim
n→∞

θ̂′0n
1/2−p = θp1/

√
2π2p(p+ 1/2) = C(p), p ≥ 0.

Figure 2 shows θ̂′0 for increasing n when p = 0, 1, 2, 3 in log scale with the same reference lines
as those in Figure 1. For all four cases shown here, the agreement between the numerical and
asymptotic results is good, even for n = 8.

4.2. Comparing the MLE and CV in a prediction problem. We consider the first two
functions on a 23 × 23 regular grid on [0, 1] × [0, 1] and let δ = 1/23 be the spacing between
neighboring points. The observations are taken on a 12×12 regular subgrid, and the remaining
385 points are predictands. An illustration of the setup is shown in Figure 3. Observations
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are taken at every other location along each dimension to facilitate the use of the inverse
Cholesky factor (2.3), so that exact computations can be done with rational correlations. The
first test function we experiment with is a mixture of Gaussians [10, 15],

f(x1, x2) = c1e
−s1((x1/δ−µ1)2+(x2/δ−µ2)2) + c2e

−s2((x1/δ−µ̃1)2+(x2/δ−µ̃2)2).(4.1)

We choose e−s1 = 399/400 and e−s2 = 99/100 to be rationals and µ1 = µ2 = 8, µ̃1 = µ̃2 = 17
to be integers so that all the observations are rational. We set c1 = 1 and c2 = −1/2 so that
the function consists of a peak and a small dip. The second function we consider is a product
of trigonometric and exponential functions [8],

f(x1, x2) = cos (c1x1 + c2x2)e
c0x1x2 .(4.2)

We choose c1 = c2 such that cos (c1δ) = cos (c2δ) = 24/25. With this choice, sin (c1δ) =
sin (c2δ) = 7/25 and cos (c1x1 + c2x2) is rational for all grid points (x1, x2) by trigonometric
identities. c0 is chosen to satisfy ec0δ

2
= 500/499 and with this choice c0 ≈ 1.06, which

approximates c0 = 1 used in [8]. Both the mixture of Gaussians (4.1) and trig-exponential
function (4.2) are symmetric about the diagonal. The third test function we consider is the
Branin function [6, 23] on a 27× 27 regular grid on [−5, 10]× [0, 15],

f(x1, x2) = e(x2 − fx21 + gx1 − r)2 + s(1− t) cos (c0x1) + s.(4.3)

The spacing between neighboring points is δb = 5/9. We choose parameters as e = 1, f = 5/36,
g = 5/3, r = 6, s = 10, t = 1/24, and cos (c0δb) = 4/5. The observations are taken on the
14×14 regular subgrid. The different setting of the grid for the Branin function is to make the
observations rational at all grid points. The three test functions with the aforementioned pa-
rameters are shown in Figure 4. The parameters for the three test functions are rounded from
the commonly used values to ensure rationality. For example, the recommended parameter
values for the Branin function that are different from our choices are f = 5.1/4π2, g = 5/π,
t = 1/8π [9, 23].

Figure 3. Locations of observations and predic-
tands.

Figure 4. Surface for test functions (4.1), (4.2),
and (4.3).
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4.2.1. Exact computation results. We compare the MLE and CV for a mixture of Gaus-
sians (4.1) and for the trig-exponential function (4.2) in predicting at the 385 points not used
to fit the model. Denote the observations as z and the log-likelihood function as L(θ0, θ1, θ2).
The profile log-likelihood function of (θ1, θ2) is defined as

ln(θ1, θ2) = L
(
θ̂0(θ1, θ2), θ1, θ2

)
,

where θ̂0(θ1, θ2) = argmaxθ0L(θ0, θ1, θ2). The profile log-likelihood function satisfies

2ln(θ1, θ2) = −n log 2π − n log θ̂0 − log |R(θ1,m)⊗R(θ2,m)|

− 1

θ̂0
zT (R(θ1,m)⊗R(θ2,m))−1 z,

(4.4)

where n = m2, m = 12, R is as defined in (2.2), and the MLE for the scale parameter is

θ̂0(θ1, θ2) =
1

n
zT (R(θ1,m)⊗R(θ2,m))−1 z.(4.5)

Leave-one-out CV error is

pn(θ1, θ2) =
n∑
i=1

(zi − ẑ−i(θ1, θ2))2 ,(4.6)

where ẑ−i(θ1, θ2) is the best linear predictor (BLP) of zi given zj , 1 ≤ j ≤ m and j 6= i under
the Gaussian process model. The functions ln and pn are, respectively, maximized and mini-
mized to obtain estimates of (θ1, θ2). Though both ln and pn are continuous functions, only
certain values of (θ1, θ2) correspond to rational correlations. We search over grids consisting
of values that allow exact computation to optimize the corresponding functions.

We perform symbolic computations because the correlation matrix is very nearly singular.
For example, if we take the set of observations as in Figure 3 with θ1 = θ2 chosen so that the
correlation between neighboring points is 0.99, when doing double precision computations, the
resulting correlation matrix is found to be not positive definite, nor is its inverse even when
using the exact formula for the inverse [19].

Since the correlations between neighboring grid points w1 = e−δ
2/θ1 and w2 = e−δ

2/θ2 are
uniquely identifiable with θ1 and θ2, we carry out the optimization in terms of (w1, w2). Denote
by C(w1, w2) the function to be optimized, either exp (ln) or pn. Throughout the optimization
algorithm, we only consider rational w1 and w2 to allow exact computations. Successive grids
with shrinking sizes are defined on [0, 1] × [0, 1] over which C(w1, w2) is optimized. Once an
optimizer (w∗1, w

∗
2) is found in the interior of a grid, we compare the log ratio of function values

of the current iterate and the previous iterate with a convergence tolerance. Moreover, we
define the 3 × 3 subgrid with (w∗1, w

∗
2) at the center as S(w∗1, w

∗
2), and compare the log ratio

of maximal and minimal function values over S(w∗1, w
∗
2) with the convergence tolerance. This

comparison is done to help ensure the grid points are taken densely enough in a neighborhood
of (w∗1, w

∗
2) so that a local optimum is obtained. We iterate until convergence. Details are

provided in Algorithm 1.
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Algorithm 1. Grid search.

Require: Convergence tolerance ε.
1: Initialize grid l1 = l2 = 0.01, r1 = r2 = 0.99.
2: Define m1 ×m2 regular grid G = {w1

1, . . . , w
1
m1
} × {w2

1, . . . , w
2
m2
} ⊂ [l1, r1]× [l2, r2].

3: Obtain optimizer (w∗1, w
∗
2) ∈ G and corresponding function value C(i)(w∗1, w

∗
2) of ith

iteration.
4: (Test for convergence)

5: if
∣∣∣ log

(
C(i)

C(i−1)

)∣∣∣ ≤ ε,
∣∣∣ log

(
max {c(i)(w1,w2),(w1,w2)∈S(w∗1 ,w∗2)}
min {c(i)(w1,w2),(w1,w2)∈S(w∗1 ,w∗2)}

)∣∣∣ ≤ ε, and (w∗1, w
∗
2) ∈ int(G)

then
6: Return with (w∗1, w

∗
2)

7: else
8: (Update searching grid)
9: for k = 1, 2 do

10: if w∗k = wkmk then (optimized at right boundary)

11: drk ← 1− wkmk
12: dlk ←

wkmk
−wk1

mk−1
13: else if w∗k = wk1 then (optimized at left boundary)

14: drk ←
wkmk

−wk1
mk−1

15: dlk ← wk1
16: else (optimized in interior)

17: drk ←
wkmk

−wk1
mk−1

18: dlk ←
wkmk

−wk1
mk−1

19: end if
20: lk ← w∗k − dlk
21: rk ← w∗k + drk
22: end for
23: i← i+ 1
24: Repeat steps 2 - 5.
25: end if

We take ε = 10−7 in all experiments. The initial grid search in step 1 of Algorithm 1
led to (0.99, 0.99) as the optimizer in step 3 for both functions considered here. To check for
multiple optima, we also started the algorithm with different initial grids. In addition, we
search over smaller and denser grids inside (0.01, 0.99) × (0.01, 0.99) and see if an optimum
could be obtained in the interior. For neither method did we find evidence for multiple local
optima up to symmetry, in the sense that (w∗1, w

∗
2) generates the same CV error as (w∗2, w

∗
1)

because of the symmetry in the observations and functions. When choosing the minimizer of
the CV error for a grid in step 3 of Algorithm 1, we select (w∗1, w

∗
2) with the convention that

w∗1 ≤ w∗2.
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Table 1
Estimates of parameters (first row), standard deviations (sd) of standardized prediction errors (second row),

and root mean squared prediction errors (last row) for mixture of Gaussians (4.1).

MLE CV

(θ̂0, θ̂1, θ̂2) (0.024, 0.39, 0.39) (3.29, 0.19, 0.66)

sd
(

p̂i−pi√
EMSE(p̂i)

)
1.56 9.42√

1
n1

∑n1
i=1(p̂i − pi)2 3.90× 10−8 3.99× 10−7

Table 2
Estimates of parameters (first row), sd of standardized prediction errors (second row), and root mean

squared prediction errors (last row) for trig-exponential function (4.2).

MLE CV

(θ̂0, θ̂1, θ̂2) (1611.13, 0.42, 0.42) (1.09× 1013, 1.87, 1.87)

sd
(

p̂i−pi√
EMSE(p̂i)

)
0.17 7.12× 10−3√

1
n1

∑n1
i=1(p̂i − pi)2 7.94× 10−7 4.75× 10−7

Denote the true predictand value as p ∈ Rn1 with n1 = 385, and covariance matrices as
Σzz = Cov(z, zT ), Σpp = Cov(p,pT ) and Σzp = Cov(z,pT ). The predictions p̂ are obtained
using the empirical BLP (EBLP) and calibrated with empirical mean squared error (EMSE).
EBLP is BLP with θ replaced by its estimate θ̂ and is given by

p̂ = ΣT
zp(θ̂)Σ

−1
zz (θ̂)z,(4.7)

and EMSE is the mean squared error (MSE) with θ replaced by its estimate θ̂ and is given by

EMSE(p̂) = Σpp(θ̂)− ΣT
zp(θ̂)Σ

−1
zz (θ̂)Σzp(θ̂).

For CV, we estimate the scale parameter θ̃0 by θ̂0(θ̃1, θ̃2) using (4.5) as suggested by [20],
where (θ̃1, θ̃2) are CV estimates for the range parameters. For the two functions, Tables 1 and
2 show the estimates, the standard deviations of standardized prediction errors, and the root
MSEs/(RMSEs).

Note that the CV estimates of the two range parameters for the mixture of Gaussians
are not equal. Switching the two range parameter estimates (namely, (0.66, 0.19)) generates
the same CV error, and if we were to employ the convention that w∗1 ≥ w∗2 in step 3 of
Algorithm 1, we would end up with the CV estimates for this case being (0.66, 0.19). We
find the unequal estimated range parameters somewhat surprising, so we did a further careful
search along the diagonal w1 = w2 and could not find any points on this diagonal with smaller
CV error than that produced by (0.19, 0.66). We also experimented with estimating the
mean of the Gaussian process. For the mixture of Gaussians, the MLEs are (θ̂0, θ̂1, θ̂2, µ̂) =
(0.018, 0.38, 0.38, 0.20) when treating the mean as unknown and is estimated. The standard
deviation of the standardized prediction errors and the root mean squared error of predictions
are 0.94 and 2.15×10−8, respectively, which are roughly similar to the results in Table 1 when
fixing the mean at 0.
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We now consider how the MLE and CV estimates of the parameters perform when used
for prediction. One of the important features of Gaussian processes is that they provide
uncertainty estimates for the predictions, so we will look at both the quality of the point
predictions and whether the standardized prediction errors (i.e., the errors divided by their
estimated standard deviations) have standard deviation close to 1. If the Gaussian process
model under consideration were correct, we should expect the MLE to do better than CV,
but since the deterministic functions we consider are obviously not realizations of a Gaussian
process, it is unclear which method will perform better. In terms of root mean squared
error, MLE is much better (by an order of magnitude; see Table 1) than CV for the mixture
of Gaussians and is moderately worse (67% larger; see Table 2) for trig-exponential. For
the mixture of Gaussians, the standardized prediction errors under MLE are reasonably well
calibrated with a standard deviation of 1.56, whereas for CV, their standard deviation is 9.42,
so that CV badly underestimates the variability of the prediction errors. For trig-exponential,
both the MLE and CV seriously overestimate the variability of the prediction errors, but CV
much more so (Table 2).

Figure 5 shows histograms of the standardized prediction errors for both functions and
both estimates. Ideally, we might hope these histograms will approximate a standard normal
distribution, but even if the truth were a Gaussian process, we should not be surprised to see
something that does not look approximately normal because of possible strong dependencies
between prediction errors at different locations. We see that in all four cases, the standardized
prediction errors follow a vaguely symmetric distribution about 0. The most noteworthy
feature in these plots occurs for the mixture of Gaussians based on CV, which was the case
where the estimated range parameters were not equal. In this plot, we see that the standard
deviation of the standardized prediction errors is much larger than 1 for predictands in odd
columns (sd=16.10) and much smaller than 1 for predictands in even columns (sd=0.15). The
tensor product form of the squared exponential covariance function implies that the EBLP
of a predictand in an odd column only depends on observations in that column (see section
A.10), so that the form of the EBLP is entirely determined by the range parameter along
columns. Similarly, the EBLP in an odd row is only a function of observations in that row,
whereas EBLPs in an even row and even column depend on all of the observations. Note
that the estimated range parameter is large along the columns, so the fitted model thinks
observations are much more strongly correlated in this direction. Since the EBLPs within odd
columns only depend on within column correlations, it is then perhaps not surprising that
the model is overoptimistic about the quality of interpolations in the direction with strong
estimated correlations.

Figure 6 shows the (unstandardized) prediction RMSE averaged over each row and column
of the large grid. For each function, we focus on the method yielding smaller prediction error.
Since the estimates of the two range parameters are equal for both of these cases and the
observations and function are symmetric about the diagonal, the prediction errors are also
symmetric. Hence, averaging over rows and columns gives identical results, so we only present
the root mean squared error averaged over the rows. Figures 7 and 8 show the prediction
errors p̂i − pi at the corresponding locations for the two functions. Note that the magnitudes
of the errors are only comparable for each function; they are not normalized across functions.
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Figure 5. From left to right: histograms of standardized prediction errors generated by the MLE for the
mixture of Gaussians, CV for the mixture of Gaussians, MLE for trig-exponential function, and CV for trig-
exponential function. The standardized prediction errors generated by CV for the mixture of Gaussians are
grouped into those in odd and even numbered columns. The histograms for the two groups are stacked.

Figures 6–8 show that, for both test functions, the prediction errors are largest for the
predictions on the second and second to last rows and columns (i.e., rows and columns 2 and
22 out of 23). We should generally expect prediction errors to be larger near a border of an
observation domain than in the interior, but it is interesting to note that, at least for these
functions, the errors tend to be larger, for example, in row 2 than row 1, even when comparing
a predictand in row 2 and and an odd column to one in row 1 and an even column, so that
the distance from the predictand to the nearest observation equals 1

23 in both cases.
Next, we show numerically that the MLE for the Branin function (4.3) does not appear

to exist. First of all, let us consider the estimation of the range parameter when f(x) = xp

with p ≥ 1. The profile log-likelihood Ln(θ1) satisfying

2Ln(θ1) = −n log(θ̂0(θ1))− log |R(θ1, n)| − n log 2π − n

is maximized to obtain MLE θ̂1.
Our empirical evidence suggests that for each p and n∗(p) = 2p+1, when n ≥ n∗(p), Ln(θ1)

monotonically increases for θ1 ∈ (0,∞) so that the MLE for θ1 does not exist. Moreover,
Ln(θ1) is bounded when n = n∗(p) and increases to ∞ when n > n∗(p). As noted in [18], this
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finding also appears to be documented in a thesis [16]. Figure 9 shows that at the critical
value n∗(p), 2Ln∗(p)(θ1) monotonically increases with a finite asymptote for some choices of
p. Since the Branin function is a quadratic polynomial along its second dimension, we expect
that the MLE for the second range parameter θ̂2 does not exist. In fact, Figure 10 shows that
for different choices of θ1, the profile log-likelihood (4.4) increases for increasing θ2. Also, the
estimated scale parameter appears to be unbounded above as θ2 increases.

4.2.2. Experiments with nugget effect. A common approach to overcome the numerical
difficulties in computing with the covariance function (1.1) is to include a small nugget effect
to stabilize the computation of the covariance matrix inversion [3, 24]. In the following, we
add a small nugget effect δ0 so that the covariance matrix of the observations has the form

θ0
{
R(θ1,m)⊗R(θ2,m) + δ0Im2

}
,(4.8)

where m = 12 is the number of observations along each dimension. In the above formulation,
we treat the nugget size δ0 fixed when fitting the model. For the two test functions (4.1) and
(4.2), we investigate the effect of including a nugget on model fitting and prediction.
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Figure 12. Successive conditional standardized
errors for ordered observations (top); absolute pre-
diction error for δ0 = 0 and δ0 = δ∗0 yielding the
smallest RMSE for each function (bottom).

With the alternative model (4.8), we evaluate the log-likelihood and prediction errors of
the MLE (θ̂1, θ̂2) obtained with exact computations in section 4.2.1 for 11 values of δ0 equally
spaced on the log scale between 10−14 and 10−12. The value 14 is the largest integer k for
which a nugget of 10−k generally yields a covariance matrix that is found to be numerically
nonsingular by the Cholesky Decomposition routine of Mathematica. For each δ0, the scale
parameter θ0 is refitted with the model (4.8) but the range parameters are not changed. Figure
11 shows the log-likelihood and RMSEs of (θ̂1, θ̂2) for the model (4.8).

For both test functions, the likelihood is substantially reduced when including even a
nugget of 10−14 and decreases for increasing nugget size. To help see why the log-likelihood
changes so much, note that log-likelihood can also be obtained with the conditional distribu-
tions of successive ordered observations so that

l(θ|z) = −n
2

log (2π)−
n∑
i=1

log (sd(zi|z1, . . . , zi−1))−
1

2

n∑
i=1

(
zi − E(zi|z1, . . . , zi−1)

sd(zi|z1, . . . , zi−1)

)2

,

where sd(zi|z1, . . . , zi−1) denotes conditional standard deviation and E(zi|z1, . . . , zi−1) denotes
conditional mean. The log-likelihood can hence be expressed by conditional standardized
errors and conditional standard deviations. We order the observations lexicographically so
that f( i1m ,

i2
m) precedes f( j1m ,

j2
m) if and only if i1 < j1 or whenever i1 = j1, i2 < j2. The

top panels of Figure 12 show, for each observation, the standardized errors and standard
deviations conditional on previous observations. For each test function, we compare the case
with δ0 = 0 and the case with the nugget size δ∗0 > 0 yielding the smallest prediction error
among the 11 positive values for δ0 we considered, which for the mixture of Gaussians, is
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δ∗0 = 10−66/5 ≈ 6.3 × 10−14 and for the trig-exponential function, is δ∗0 = 10−14. For both
test functions, the conditional standardized errors are similarly calibrated for δ0 = 0 and
δ0 = δ∗0 . However, some of the conditional standard deviations are much smaller when there
is no nugget. Successive predictions of the ordered observations are more accurate at some
locations when the model does not have a nugget.

For the trig-exponential function, Figure 11 shows root mean squared prediction error
increases for increasing nugget size. However, better successive predictions at the test obser-
vations does not necessarily imply better predictions at other locations: we do see that for
the mixture of Gaussians, the prediction error is slightly smaller for δ0 = 10−14 compared
with the nugget-free case and further decreases as δ0 increases before eventually increasing.
The bottom panels of Figure 12 show the absolute prediction errors for each predictand when
δ0 = 0 and δ0 = δ∗0 . For the mixture of Gaussians, there is no obvious dominance for either
δ0 = 0 and δ0 = δ∗0 . In contrast, for the trig-exponential function, it is evident that the
nugget-free model predicts better at most locations, perhaps especially for locations with the
largest error, which tend to be near the boundaries of the observation region.

5. Conclusions. Since the approach was proposed by [25, 26], it has become quite com-
mon practice to model the deterministic output of a computer experiment as a realization of
a Gaussian process. The Gaussian process with squared exponential covariance function is
infinitely differentiable and thus is attractive if the computer model output is known to be
smooth. In this article, we investigated the asymptotics for the MLE of the scale parameter
for this covariance when the computer response is a pth order monomial. Using exact com-
putation, we investigated and compared the MLE and CV estimates in a prediction problem.

Using the exact expression for the Cholesky factor and its inverse of the correlation matrix
derived in [19], we proved that for regularly spaced observations, when the test function is a
pth order monomial and the range parameter is fixed, the MLE of the scale parameter θ̂0 → 0
when p = 0 and θ̂0 → ∞ when p = 1 as the number of observations n → ∞. When the
observations are derivatives of the model function at zero, we derived the exact expression of
the inverse Cholesky factor of the correlation matrix and proved asymptotic orders of θ̂0 for
all p ≥ 0. We are unable to prove an asymptotic order for general p > 1 for regularly spaced
observations. However, we conjecture that the asymptotic order is the same as that of the
derivative case with a possibly different constant.

Though both MLE and CV are used in the computer experiment literature, it is not
clear under what circumstances each method will yield smaller prediction errors with more
calibrated standardized errors. When a model is misspecified, CV can sometimes be a good
way of choosing parameters for prediction, since the CV criterion is based on prediction. For
deterministic computer experiments, we know that, in fact, the outputs are not realizations
of some Gaussian process model. Nevertheless, our experiments show that CV does not al-
ways improve upon the likelihood method. For example, CV estimates produce much larger
prediction errors and poorer calibration for the mixture of Gaussians and modestly better pre-
dictions but far worse calibration for the trig-exponential function. This finding is consistent
with the findings in [4] which shows CV appears to be less robust than the MLE to model
misspecification under regular grid design.
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These numerical experiments used exact arithmetic, which will not generally be possible.
Adding a small nugget is a common approach to alleviate the numerical instabilities in de-
composing nearly singular covariance matrices. Our experiments suggest model fitting (as
measured by the likelihood) deteriorates substantially by adding even a nugget that barely
makes the covariance matrix numerically positive definite, whereas prediction can sometimes
be slightly improved by adding a small nugget. Another interesting finding of our work is
that, for the Branin test function, the MLEs do not appear to exist. This result can be
viewed as an implication of the numerical finding that when the model function is a pth order
monomial, the MLE of the range parameter does not exist when the number of observations
exceeds a critical value (see also [16, 18]). For test functions that are a polynomial in one
of its dimensions, the use of the likelihood method is not expected to produce meaningful
estimates and inference. Though our results regarding the estimation of range parameters is
empirical and based on limited numerical experiments, we believe that the examples shown
give an indication of possible issues and consequences when using simple smooth test functions
to study how well Gaussian process models work for deterministic computer models. Whether
similar results might hold for, say, the numerical solution of a complex system of differential
equations deserves further study.

Appendix A. Proofs of statements in sections 2–4. In order to prove Proposition 2.1,
Lemma 2.2, Theorems 2.3 and 2.4, we need the following lemmas.

Lemma A.1. For 0 ≤ r ≤ m and i ≥ 1,
(a)

[
m
r

]
q

=
[
m
m−r

]
q
,

(b)
[
m
r

]
q

= qr
[
m−1
r

]
q

+
[
m−1
r−1
]
q

=
[
m−1
r

]
q

+ q(m−r)
[
m−1
r−1
]
q
,

(c) limq→1

[
m
r

]
q

=
(
m
r

)
,

(d)
∑i

j=1(−w)i−j
[
i−1
j−1
]
w2

=
∏i−1
k=1

(
1 + (−w)k

)
.

We refer the readers to [2] for the proof of Lemma A.1.

Lemma A.2. If an ∼ bn, an > 0, and
∑∞

n=1 an =∞, then
∑N

n=1 an ∼
∑N

n=1 bn as N →∞.

Proof. We carry out a standard ε−N proof.
Since an ∼ bn, for any ε > 0, there exists N0(ε) > 0 such that for any n ≥ N0(ε),

|an − bn| < εan/2;

then for any N ≥ N0(ε),

N∑
n=N0(ε)

|an − bn| <
ε

2

N∑
n=N0(ε)

an.(A.1)

Since
∑∞

n=1 an =∞, there exists N1(ε) ≥ N0(ε) such that for any N ≥ N1(ε),

N0(ε)∑
n=1

|an − bn| <
ε

2

N∑
n=N0(ε)

an.(A.2)
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As a result, for any N ≥ N1(ε) ≥ N0(ε),∣∣∣∑N
n=1(an − bn)

∣∣∣∑N
n=1 an

≤
∑N0(ε)−1

n=1 |an − bn|+
∑N

n=N0(ε)
|an − bn|∑N

n=N0(ε)
an

≤ ε

2
+
ε

2
= ε,

where the second inequality follows from (A.2) and (A.1).

Lemma A.3.
∑i

j=1(−w)i−j
[
i−1
j−1
]
w2
jp −

∑i−1
j=1(−w)i−j−1

[
i−2
j−1
]
w2
jp = Aip(w) +Bip(w),

where

Aip(w) = (−w)i−1
i−1∑
j=1

(−w)i−1−j
[
i− 2

j − 1

]
w2

(i− 1− j)p,

Bip(w) =
i∑

j=1

(−w)i−j
[
i− 1

j − 1

]
w2

(jp − (j − 1)p)

for p ≥ 0 and i− 1 > p.

Proof.

i∑
j=1

(−w)i−j
[
i− 1

j − 1

]
w2

jp −
i−1∑
j=1

(−w)i−j−1
[
i− 2

j − 1

]
w2

jp

= (−w)i−1 + (ip − (i− 1)p) +
i−2∑
k=1

(−w)i−k−1
([
i− 1

k

]
w2

(k + 1)p −
[
i− 2

k − 1

]
kp
)

= (−w)i−1 + (ip − (i− 1)p) +
i−2∑
k=1

(−w)i−k−1
(
w2k

[
i− 2

k

]
w2

kp +

[
i− 1

k

]
w2

((k + 1)p − kp)
)

= (−w)i−1
i−2∑
k=1

(−w)k
[
i− 2

k

]
w2

kp +
i−1∑
k=0

(−w)i−k−1
[
i− 1

k

]
w2

((k + 1)p − kp)

= (−w)i−1
i−1∑
j=1

(−w)i−1−j
[
i− 2

j − 1

]
w2

(i− 1− j)p +
i∑

j=1

(−w)i−j
[
i− 1

j − 1

]
w2

(jp − (j − 1)p)

= Aip(w) +Bip(w),

where the second equality is obtained using Lemma A.1(b), and the fourth equality is obtained
by a change of variable j = i− 1− k for Aip(w) and j = k + 1 for Bip(w).

The following lemma gives a factorization of
∑i

j=1(−w)i−j
[
i−1
j−1
]
w2
jp that enables simpli-

fication of θ̂0.

Lemma A.4.

i∑
j=1

(−w)i−j
[
i− 1

j − 1

]
w2

jp =

{
(1− w)

i−p−1
2 fip(w), i− p odd,

(1− w)
i−p
2 gip(w), i− p even
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for any w ∈ (0, 1), where, for p ≥ 0 and i > p, fip(w) is a polynomial, fip(1) = (i−1)!
( i−p−1

2
)!

,

gip(w) is a polynomial, and gip(1) = i!(p+1)

2( i−p
2

)!
.

Proof. We denote for simplicity mip(w) :=
∑i

j=1(−w)i−j
[
i−1
j−1
]
w2
jp. Here we make an

induction on (i, p) where p ≥ 0 and i > p. Specifically, we prove the following three steps of
which the first two serve as an induction basis:

(a) The statement holds for any p = 0 and i > 0.
With Lemma A.1(d), we have

mi0(w) =

i∑
j=1

(−w)i−j
[
i− 1

j − 1

]
w2

=

i−1∏
k=1

(
1 + (−w)k

)
=

{
(1− w)

i−1
2 fi0(w), i odd,

(1− w)
i
2 gi0(w), i even,

where fi0(w) and gi0(w) are polynomials and

fi0(1) = 2
i−1
2 (i− 2)!! =

(i− 1)!

( i−12 )!
,

gi0(1) = 2
i−2
2 (i− 1)!! =

i!

2( i2)!
.

(b) The statement holds for any i = p+ 1 and p ≥ 1.
When i = p + 1, i − p is odd and mp+1,p(w) is a polynomial by definition. Then by
Lemma A.1(c),

mp+1,p(1) =

p+1∑
j=1

(−1)p+1−j
(

p

j − 1

)
jp

= (−1)p
p∑

k=0

(−1)k
(
p

k

)
(k + 1)p

= (−1)p(−1)pp!

= p!.

(c) Suppose the statement holds for any (i′, p′) such that (0 ≤ p′ < p and i′ > p′)
or (p′ = p and p′ < i′ < i), then the statement also holds for (i, p).
Define the following polynomials in w:

hip(w) = (−w)i−1
p∑

k=3

(−1)p−k(i− 1)k
(
p

k

)(
(1− w)

k−3
2 gi−1,p−k(w)1(k odd)

+ (1− w)
k−4
2 fi−1,p−k(w)1(k even)

)
,

rip(w) =

p−2∑
k=0

(−1)p−k+1

(
p

k

)(
(1− w)

p−k−3
2 fik(w)1(i−k odd) + (1− w)

p−k−2
2 gik(w)1(i−k even)

)
,
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uip(w) = (−w)i−1
p∑

k=2

(−1)p−k(i− 1)k
(
p

k

)(
(1− w)

k−3
2 fi−1,p−k(w)1(k odd)

+ (1− w)
k−2
2 gi−1,p−k1(k even)

)
,

vip(w) =

p−1∑
k=0

(−1)p−k+1

(
p

k

)(
(1− w)p−k−2fik(w)1(i−k odd) + (1− w)p−k−1gik(w)1(i−k even)

)
.

When i− p is even, letting Aip(w) and Bip(w) be defined as in Lemma A.3 and from
binomial expansion, we have

Aip(w) = (−w)i−1
i−1∑
j=1

(−w)i−1−j
[
i− 2

j − 1

]
w2

(i− 1− j)p

= (−w)i−1
i−1∑
j=1

(−w)i−1−j
[
i− 2

j − 1

]
w2

×

(
(−1)pjp + (−1)p−1p(i− 1)jp−1 + (−1)p−2(i− 1)2

(
p

2

)
jp−2

+

p∑
k=3

(−1)p−k(i− 1)k
(
p

k

)
jp−k

)

= (−w)i−1

(
(−1)pmi−1,p(w) + (−1)p−1p(i− 1)mi−1,p−1(w)

+ (−1)p−2(i− 1)2
(
p

2

)
mi−1,p−2(w)

)

+ (−w)i−1
p∑

k=3

(−1)p−k(i− 1)k
(
p

k

)
mi−1,p−k(w)

= (−w)i−1
(

(−1)p(1− w)
i−p−2

2 fi−1,p(w) + (−1)p−1p(i− 1)(1− w)
i−p
2 gi−1,p−1(w)

)
+ (−w)i−1

(
(−1)p−2(i− 1)2

(
p

2

)
(1− w)

i−p
2 fi−1,p−2(w)

)
+ (−w)i−1

p∑
k=3

(−1)p−k(i− 1)k
(
p

k

)
×
(

(1− w)
i−1−p+k

2 gi−1,p−k(w)1(i−p+k−1 even)

+ (1− w)
i−p+k−2

2 fi−1,p−k(w)1(i−p+k−1 odd)

)
= (−w)i−1

(
(−1)p(1− w)

i−p−2
2 fi−1,p(w) + (−1)p−1p(i− 1)(1− w)

i−p
2 gi−1,p−1(w)

)
+ (−w)i−1

(
(−1)p−2(i− 1)2

(
p

2

)
(1− w)

i−p
2 fi−1,p−2(w)

)
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+ (−w)i−1
p∑

k=3

(−1)p−k(i− 1)k
(
p

k

)
(1− w)

i−p
2

+1

×
(

(1− w)
k−3
2 gi−1,p−k(w)1(k odd) + (1− w)

k−4
2 fi−1,p−k(w)1(k even)

)
= (−w)i−1

(
(−1)p(1− w)

i−p−2
2 fi−1,p(w) + (−1)p−1p(i− 1)(1− w)

i−p
2 gi−1,p−1(w)

)
+ (−w)i−1

(
(−1)p−2(i− 1)2

(
p

2

)
(1− w)

i−p
2 fi−1,p−2(w)

)
+ (1− w)

i−p
2

+1hip(w),

and

Bip(w) =
i∑

j=1

(−w)i−j
[
i− 1

j − 1

]
w2

(jp − (j − 1)p)

=

i∑
j=1

(−w)i−j
[
i− 1

j − 1

]
w2

(
p−1∑
k=0

(
p

k

)
jk(−1)(p−k+1)

)

=

i∑
j=1

(−w)i−j
[
i− 1

j − 1

]
w2

(
pjp−1 +

p−2∑
k=0

(
p

k

)
jk(−1)(p−k+1)

)

= pmi,p−1(w) +

p−2∑
k=0

(−1)(p−k+1)

(
p

k

)
mik(w)

= p(1− w)
i−p
2 fi,p−1(w)

+

p−2∑
k=0

(−1)p−k+1

(
p

k

)(
(1− w)

i−k−1
2 fik(w)1(i−k odd) + (1− w)

i−k
2 gik(w)1(i−k even)

)
= p(1− w)

i−p
2 fi,p−1(w)

+

p−2∑
k=0

(−1)p−k+1

(
p

k

)
(1− w)

i−p
2

+1

(
(1− w)

p−k−3
2 fik(w)1(i−k odd)

+ (1− w)
p−k−2

2 gik(w)1(i−k even)

)
= p(1− w)

i−p
2 fi,p−1(w) + (1− w)

i−p
2

+1rip(w).

Then by Lemma A.3, we have

mip(w) = mi−1,p(w) +Aip(w) +Bip(w)

= (1− w)
i−p−2

2 fi−1,p(w)− wi−1(1− w)
i−p−2

2 fi−1,p(w)

+ wi−1p(i− 1)(1− w)
i−p
2 gi−1,p−1(w)

− wi−1(i− 1)2
(
p

2

)
(1− w)

i−p
2 fi−1,p−2(w) + p(1− w)

i−p
2 fi,p−1(w)

+ (1− w)
i−p
2

+1hip(w) + (1− w)
i−p
2

+1rip(w)
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= (1− w)
i−p
2

(
fi−1,p(w)

(
1− wi−1

1− w

)
+ p(i− 1)wi−1gi−1,p−1(w)

−
(
p

2

)
(i− 1)2wi−1fi−1,p−2(w) + pfi,p−1(w)

+ (1− w)hip(w) + (1− w)rip(w)

)
.

Let

gip(w) = fi−1,p(w)

(
1− wi−1

1− w

)
+ p(i− 1)wigi−1,p−1(w)

−
(
p

2

)
(i− 1)2wi−1fi−1,p−2(w) + pfi,p−1(w)

+ (1− w)hip(w) + (1− w)rip(w)

which is a polynomial by the induction hypothesis, and

gip(1) = (i− 1)
(i− 2)!

( i−p−22 )!
+ p(i− 1)

(i− 1)!p

2( i−p2 )!
−
(
p

2

)
(i− 1)2

(i− 2)!

( i−p2 )!
+ p

(i− 1)!

( i−p2 )!

=
(i− 1)!

( i−p2 )!

(
i− p

2
+ p+

p2(i− 1)

2
− p(p− 1)(i− 1)

2

)
=
i!(p+ 1)

2( i−p2 )!
.

When i− p is odd, similarly by binomial expansion and the induction hypothesis, we
have

Aip(w) = (−w)i−1
(

(−1)p(1− w)
i−p−1

2 gi−1,p(w) + (−1)p−1p(i− 1)(1− w)
i−p−1

2 fi−1,p−1(w)
)

+ (−w)i−1
p∑

k=2

(−1)p−k(i− 1)k
(
p

k

)
mi−1,p−k(w)

= (−w)i−1
(

(−1)p(1− w)
i−p−1

2 gi−1,p(w) + (−1)p−1p(i− 1)(1− w)
i−p−1

2 fi−1,p−1(w)
)

+ (−w)i−1
p∑

k=2

(−1)p−k(i− 1)k
(
p

k

)
×(1− w)

i−p+1
2

(
(1− w)

k−3
2 fi−1,p−k(w)1(k odd) + (1− w)

k−2
2 gi−1,p−k1(k even)

)
= (−w)i−1

(
(−1)p(1− w)

i−p−1
2 gi−1,p(w) + (−1)p−1p(i− 1)(1− w)

i−p−1
2 fi−1,p−1(w)

)
+ (1− w)

i−p+1
2 uip(w),

and

Bip(w) =

p−1∑
k=0

(−1)p−k+1

(
p

k

)
mik(w)
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=

p−1∑
k=0

(−1)p−k+1

(
p

k

)
×(1− w)

i−p+1
2

(
(1− w)p−k−2fik(w)1(i−k odd) + (1− w)p−k−1gik(w)1(i−k even)

)
= (1− w)

i−p+1
2 vip(w).

Then similarly by Lemma A.3, we have

mip(w) = mi−1,p(w) +Aip(w) +Bip(w)

= (1− w)
i−p−1

2
(
gi−1,p(w) + wi−1gi−1,p(w)− p(i− 1)wi−1fi−1,p−1(w)

)
+ (1− w)

i−p−1
2 ((1− w)uip(w) + (1− w)vip(w)) .

Let

fip(w) = gi−1,p(w) + wi−1gi−1,p(w)− p(i− 1)wi−1fi−1,p−1(w)

+ (1− w)uip(w) + (1− w)vip(w)

which is a polynomial, and

fip(1) = 2
(i− 1)!(p+ 1)

2( i−p−12 )!
− p(i− 1)

(i− 2)!

( i−p−12 )!

=
(i− 1)!

( i−p−12 )!
.

Lemma A.5. ai0(w) monotonically decreases for w ∈ (0, 1) and any i ≥ 1.

Proof. With Lemma A.1(d), we have

ai0(w) =

∏i−1
k=1

(
1 + (−w)k

)2∏i−1
k=1(1− w2k)

=
i−1∏
k=1

1 + (−w)k

1− (−w)k
.

For k ≥ 1, let

fk(w) =
(1− wk)(1 + wk+1)

(1 + wk)(1− wk+1)
,(A.3)

then fk(w) =
(

2
1+wk

− 1
)(

2
1−wk+1 − 1

)
and

f ′k(w) =
−2kwk−1

(1 + wk)2

(
2

1− wk+1
− 1

)
+

2(k + 1)wk

(1− wk+1)2

(
2

1 + wk
− 1

)
=

1

(1 + wk)2(1− wk+1)2
2wk−1

(
kw2k+2 − (k + 1)w2k+1 + (k + 1)w − k

)
.
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For gk(w) = kw2k+2 − (k + 1)w2k+1 + (k + 1)w − k, we know gk(1) = 0 and

g′k(w) = (k + 1)(1− w)(1 + w + · · ·+ w2k−1 − 2kw2k) > 0

for w ∈ (0, 1). As a result, gk(w) < 0 for w ∈ (0, 1) and hence fk(w) monotonically decreases
on (0, 1). Because

ai0(w) =


∏ i−1

2
k=1 f2k−1(w), i odd,∏ i−2
2
k=1 f2k−1(w)1−w

i−1

1+wi−1 , i even,

ai0(w) is monotonically decreasing over (0, 1).

Lemma A.6. Denote w∗i := e
− 1

2(i−2) , then ai1(w) monotonically decreases for w ∈ (w∗i , 1)
and any i ≥ 2 and i even.

Proof. We prove this by induction. Note that by the definition of w, we have n2 =(
θ1 log 1

w

)−1
.

When i = 2,

a21(w) =
(2− w)2θ1 log 1

w

(1− w2)
,

a′21(w) =
(2− w)θ1
(1− w2)2

(
−2(1− w2) log

1

w
+ (2− w)

(
2w log

1

w
+ w − 1

w

))
.

Consider z(w) = 2w log 1
w + w − 1

w , then z(1) = 0 and z′(w) = 1
w2 + 2 log 1

w − 1 > 0 for
w ∈ (0, 1). So z(w) < 0 for w ∈ (0, 1). As a result, a′21(w) < 0 for w ∈ (0, 1). Note that
w∗2 = 0. We denote for simplicity mip(w) :=

∑i
j=1(−w)i−j

[
i−1
j−1
]
w2
jp. Suppose the statement

holds for some even i, then for i+ 2, by repeatedly applying Lemma A.3, we obtain

mi+2,1(w) = (1 + wi+1)(1− wi)mi1(w) +
(
iwi(1− w) + (1 + wi)(2− wi+1)

)
mi0(w).

We consider, by using Lemma A.1(d),√
ai+2,1(w) =

mi+2,1(w)

n
√∏i+1

k=1(1− w2k)

=
(1 + wi+1)(1− wi)mi1(w)

n
√

(1− w2i)(1− w2(i+1))
∏i−1
k=1(1− w2k)

+
mi0(w)

(
iwi(1− w) + (1 + wi)(2− wi+1)

)
n
√∏i+1

k=1(1− w2k)

=
√
ai1(w)

√
(1− wi)(1 + wi+1)

(1 + wi)(1− wi+1)

+
√
ai0(w)

iwi(1− w) + (1 + wi)(2− wi+1)

n
√

(1− w2i)(1− w2(i+1))



MLE OF SMOOTH GAUSSIAN RANDOM FIELD MODEL 163

=
√
ai1(w)

√
(1− wi)(1 + wi+1)

(1 + wi)(1− wi+1)

+
√
ai+2,0(w)

iwi(1− w) + (1 + wi)(1− wi+1) + (1 + wi)

n(1 + wi)(1− wi+1)

=
√
ai1(w)

√
(1− wi)(1 + wi+1)

(1 + wi)(1− wi+1)

+
wi

n

i
√
ai+2,0

(1 + wi)(1 + w + · · ·+ wi)
+

√
ai+2,0

n
+

√
ai+2,0

n(1− wi+1)

:= I1(w) + I2(w) + I3(w) + I4(w).

Now we show the monotonicity for each Ii(w), i = 1, . . . , 4. First,

I1(w) =
√
ai1(w)fi(w),

where fi(w) is defined in (A.3). I1(w) monotonically decreases for w > w∗i by the induction
hypothesis and the fact that fi(w) decreases (proved in Lemma A.5). Second, I2(w) mono-

tonically decreases for w > w∗i+2 by Lemma A.5 and the fact that w2i

n2 monotonically decreases

for w > w∗i+2 = e−
1
2i , which follows from

w2i

n2
= θ1w

2i log
1

w
,

d

dw

(
w2i log

1

w

)
= w2i−1(2i log

1

w
− 1) < 0

⇔ w > e−
1
2i .

Third, I3(w) monotonically decreases for w ∈ (0, 1) by Lemma A.5. Finally,

I4(w) =

√
ai+1,0(1− wi+1)

n(1− wi+1)
√

1 + wi+1
=

√
ai+1,0

n
√

1− w2(i+1)
,

where ai+1,0 monotonically decreases for w ∈ (0, 1) by Lemma A.5. Then we show that
n2(1− w2(i+1)) monotonically increases over (0, 1) as follows:

n2(1− w2(i+1)) =
1− w2(i+1)

θ1 log 1
w

,

d

dw

(
1− w2(i+1)

log 1
w

)
=

1

w log2 1
w

(
1− w2(i+1) − 2(i+ 1)w2(i+1) log

1

w

)
,

letting t(w) = 1−w2(i+1)−2(i+1)w2(i+1) log 1
w , then t(1) = 0 and t′(w) = −(2i+2)2w2i+1 log 1

w
< 0 for w ∈ (0, 1), so we have t(w) > 0 for w ∈ (0, 1). So I4(w) monotonically decreases for
w ∈ (0, 1). As a result, we conclude that ai+2,1(w) monotonically decreases for w > w∗i+2.
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A.1. Proof of Proposition 2.1. With Lemma A.4, we can cancel some factors to obtain(∑i
j=1(−w)i−j

[
i−1
j−1
]
w2
jp
)2

n2p
∏i−1
k=1(1− w2k)

=


f2ip(w)

(1−w)pn2p
∏i−1
k=1 zk(w)

, i− p odd,

g2ip(w)(1−w)
(1−w)pn2p

∏i−1
k=1 zk(w)

, i− p even,

where zk(w) = (1 + wk)(1 + w + · · ·+ wk−1).
Note that

(1− w)n2 → 1/θ1

as n→∞. Then we have

lip =


f2ip(1)θ

p
1∏i−1

k=1 zk(1)
, i− p odd,

0, i− p even,

which equals the right-hand side of (2.5) by using Lemma A.4.

A.2. Proof of Lemma 2.2. When i − p is odd, by Stirling’s approximation, as i → ∞,
we have

lip ∼
√

2π(i− 1)( i−1e )i−1θp1

2i−1π(i− p− 1)( i−p−12e )i−p−1

∼
√

2

π

ip−
1
2 θp1

2p
.

Since
∑∞

i=1 i
p−1/2 =∞ for all p ≥ 0, by Lemma A.2, as n→∞, we have

n∑
i=p+1

lip =

dn−p
2
e∑

k=1

lp+2k−1,p

∼
dn−p

2
e∑

k=1

√
2

π

(2k)p−
1
2 θp1

2p

∼
√

2

π

2p−
1
2 θp1

2p

dn−p
2
e∑

k=1

kp−
1
2

∼
√

2

π

2p−
1
2 θp1

2p
1

(p+ 1
2)

(
n− p

2
)p+

1
2

∼ np+
1
2 θp1√

2π2p(p+ 1
2)

and Lemma 2.2 follows.
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A.3. Proof of Theorem 2.3. Let s(x) = 1−wx
x for some w ∈ (0, 1). Note that s(x)

monotonically decreases for x > 0. The series expansion is s(x) =
∑∞

l=1
(−x)l−1

l! ( 1
θ1n2 )l for

w = e−1/θ1n
2
. Then

s(2k − 1)− s(2k) =

∞∑
l=1

(−1)l

θl1l!

(2k)l−1 − (2k − 1)l−1

n2l

≤
∞∑
l=1

1

θ2l1 (2l)!

(2k)2l−1 − (2k − 1)2l−1

n4l

≤
∞∑
l=1

1

θ2l1 (2l)!

2l
(
2l−1
l

)
(2k)2l−2

n4l

≤
∞∑
l=1

1

θ2l1 l!

(2k)2l−2

n4l

≤ e1/θ21
∞∑
l=1

(2k)2l−2

n4l
,

where the second inequality comes from the binomial expansion.

Referring back to Definition 3.1, since, when n is odd, (n−1)!! = 2
n−1
2

(
n−1
2

)
! and (n−1)! =

(n− 1)!!(n− 2)!!, we have

ln0 =
(n− 1)!

2n−1
(
n−1
2 !
)2 =

(n− 2)!!

(n− 1)!!
,

so

an0(w)

ln0
=

n−1
2∏

k=1

1 + w2k

1 + w2k−1
s(2k − 1)

s(2k)
≤

n−1
2∏

k=1

s(2k − 1)

s(2k)

and

log
an0(w)

ln0
=

n−1
2∑

k=1

log

(
1 +

s(2k − 1)− s(2k)

s(2k)

)
(A.4)

≤

n−1
2∑

k=1

s(2k − 1)− s(2k)

s(n− 1)

≤ e1/θ
2
1

s(n− 1)

n−1
2∑

k=1

∞∑
l=1

(2k)2l−2

n4l

=
e1/θ

2
1

s(n− 1)

∞∑
l=1

n−1
2∑

k=1

(2k)2l−2

n4l



166 WANTING XU AND MICHAEL L. STEIN

≤ e1/θ
2
1

s(n− 1)

∞∑
l=1

n2l−1

n4l

=
e1/θ

2
1

s(n− 1)

n2

n3(n2 − 1)

=
1

(n+ 1)

e1/θ
2
1

(1− wn−1)n
→ 0

as n→∞, since (1− wn−1)n→ 1/θ1 as n→∞.

By Lemma A.5, an0(w)ln0
≥ 1 for n ≥ 1, and combined with (A.4), we obtain that for n odd,

an0(w)

ln0
→ 1

as n→∞. For n even,

an0(w) = an−1,0(w)
1− wn−1

1 + wn−1
∼ 1

2θ1n
ln−1,0

as n→∞.
As a result, denoting wi = e−1/θ1i

2
, we have, as n→∞,

n∑
i=1

ai0(wi) ∼
n∑
i=1

li0 +

n∑
i=1

1

2θ1i
li0 ∼

n∑
i=1

li0.(A.5)

Lemma A.5 implies

n∑
i=1

li0 ≤
n∑
i=1

ai0(w) ≤
n∑
i=1

ai0(wi).(A.6)

Combining (A.5) and (A.6), we have

θ̂0 =
1

n

n∑
i=1

ai0(w) ∼ 1

n

n∑
i=1

li0 ∼
√

2

π

1√
n
,

where the last asymptotic equivalence is obtained by taking p = 0 in Lemma 2.2.

A.4. Proof of Theorem 2.4. Since there exists N(θ1) such that for any n > N(θ1),

e
− 1

2(n−2) < e
− 1
θ1n

2 = w,

with Lemma A.6, for any n > N(θ1),

w > w∗n ≥ w∗i

for any 2 ≤ i ≤ n and i even.
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As a result,
n∑
i=2

ai1(w) ≥
n∑
i=2

li1,

then
θ̂0√
n

=

∑n
i=1 ai1

n3/2
≥
∑n

i=2 li1

n3/2
.

Theorem 2.4 follows by taking limit infimum on both sides of the above inequality and setting
p = 1 in Lemma 2.2.

A.5. Proof of Proposition 2.6. For convenience, consider n to be even in the subsequent
proof. The arguments only need to be slightly modified for n odd. Denote k as the index of
the first nonzero element in the observations, then k = n/2 + 1 and f(k/n) = g(1/n). The
observations are z = (0, . . . , 0, g(1/n), . . . , g(1/2))T . Denote the (k, k)th element of the inverse
Cholesky factor by C−1(k,k). Referring back to (2.3) gives

θ̂0 =
1

n

n∑
i=1

‖C−1z‖2

≥ 1

n

(
C−1(k,k)g(1/n)

)2
=

g2(1/n)

n
∏k−1
l=1 (1− w2l)

.

(A.7)

Let L = p+ 1, then for all n sufficiently large,

k−1∏
l=1

(1− w2l) <

L∏
l=1

(1− w2l).(A.8)

Since w = e1/(θ1n
2),
∏L
l=1(1− w2l) ∼ 2LL!

θL1 n
2L as n→∞. Combining (A.7) and (A.8) gives

lim inf
n→∞

θ̂0
n
≥ lim inf

n→∞

g2(1/n)n2p

n2p+2
∏L
l=1(1− w2l)

=
θL1 c

2LL!
> 0.

A.6. Proof of a statement in section 2. We state and prove the following proposition.

Proposition A.7. With the exponential covariance function Cov(f(x), f(y)) = θ0e
−|x−y|/θ1,

if the observations are z = (f( 1
n), f( 2

n), . . . , f(1))T for some f having a bounded second deriva-
tive on [0, 1], then as n→∞,

θ̂0 ∼
1

n
f(0)2 +

1

2θ1n

∫ 1

0

(
f(x) + θ1f

′(x)
)2
dx.
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Proof. Denote the correlation matrix as R and its Cholesky decomposition as R = CCT

for some C lower triangular, then Rij = ρ|i−j|, where ρ = e−1/nθ1 . The Cholesky and inverse
Cholesky factors are

C=


1

ρ
√

1− ρ2 0

ρ2 ρ
√

1− ρ2
√

1− ρ2
...

...
...

. . .

ρn−1 ρn−2
√

1− ρ2 ρn−3
√

1− ρ2 . . .
√

1− ρ2

 ,

C−1=
1√

1− ρ2


√

1− ρ2 0
−ρ 1

. . .
. . .

0 −ρ 1

 ,
so

θ̂0 =
1

n
zTR−1z =

1

n
‖C−1z‖2

=
1

n
f(0)2 +

1

n

n∑
j=2

(
f( jn)− ρf( j−1n )

)2
1− ρ2

.

A Taylor expansion gives that for some xj ∈ ( j−1n , jn), 2 ≤ j ≤ n,

f

(
j

n

)
− ρf

(
j − 1

n

)
= f

(
j − 1

n

)
+

1

n
f ′
(
j − 1

n

)
+

1

n2
f ′′ (xj)−f

(
j − 1

n

)(
1− 1

θ1n
+
αn
n2

)
=

1

θ1n
f

(
j − 1

n

)
+

1

n
f ′
(
j − 1

n

)
+
rjn
n2
,

(A.9)

where |αn| ≤ α = 1/(2θ21) and

rjn = f ′′(xj)− αnf
(
j − 1

n

)
.

Since f ′′(x) is bounded on [0, 1], f(x) and f ′(x) are continuous and bounded on [0, 1]. Denote
A := supx∈[0,1] {|f(x)|, |f ′(x)|, |f ′′(x)|}, then

|rjn| ≤ A+Aα.

(A.9) gives that

n∑
j=2

(
f

(
j

n

)
− ρf

(
j − 1

n

))2

=
n∑
j=2

(
1

θ1n
f

(
j − 1

n

)
+

1

n
f ′
(
j − 1

n

))2

+

∑n
j=2 r

2
jn

n4

+
n∑
j=2

2rjn
n2

(
1

θ1n
f

(
j − 1

n

)
+

1

n
f ′
(
j − 1

n

))
,
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where as n→∞,

n∑
j=2

(
1

θ1n
f

(
j − 1

n

)
+

1

n
f ′
(
j − 1

n

))2

=
1

n

n∑
j=2

1

n

(
1

θ1
f

(
j − 1

n

)
+ f ′

(
j − 1

n

))2

∼ 1

n

∫ 1

0

(
1

θ1
f

(
j − 1

n

)
+ f ′

(
j − 1

n

))2

dx,

since the integrand is continuous so the sum converges to the corresponding Riemann integral,
and ∑n

j=2 r
2
jn

n4
≤ A2 (1 + α)2

n3
,

∣∣∣∣∣∣
n∑
j=2

2rjn
n2

(
1

θ1n
f

(
j − 1

n

)
+

1

n
f ′
(
j − 1

n

))∣∣∣∣∣∣ ≤
n∑
j=2

2|rjn|
n2

(
A

θ1n
+
A

n

)

≤ 2A2 (1 + α)

n2

(
1 +

1

θ1

)
.

As a result, as n→∞,

n∑
j=2

(
f

(
j

n

)
− ρf

(
j − 1

n

))2

∼ 1

n

∫ 1

0

(
1

θ1
f

(
j − 1

n

)
+ f ′

(
j − 1

n

))2

dx,

together with ρ = e−1/θ1n, 1− ρ2 ∼ 2
θ1n

complete the proof.

A.7. Proof of Proposition 3.2. First of all, we prove the following lemma that is used
frequently in the subsequent proofs.

Lemma A.8. For 0 ≤ p ≤ m− 1 and m ≥ 1,
(a)

∑m
l=0(−1)l

(
m
l

)
lp = 0,

(b)
∑m

l=0(−1)l
(
m
l

)
lm = (−1)mm!

Proof. The Stirling numbers of the second kind can be expressed as the sum [5]:

S(m, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)m.

Lemma A.8 follows from S(m,m) = 1 and S(p,m) = 0 for 0 ≤ p < m.

For convenience we write R1(θ1, n) = Rn and D(θ1, n) = Dn. Since both Rn and Dn are
nested, we use induction to prove the proposition. First of all, when n = 1, R1 = D1 = 1.
Suppose Proposition 3.2 is true for n, i.e., DT

nDnRn = In, then for n+ 1, partition Rn+1 and
Dn+1 as

Rn+1 :=

[
Rn rn+1

rTn+1 Rn+1,n+1

]
,
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Dn+1 :=

[
Dn 0
dTn+1 Dn+1,n+1

]
,

then

DT
n+1Dn+1Rn+1 =

[
DT
nDnRn + dn+1An Cn
Dn+1,n+1An Bn

]
,

where

An = dTn+1Rn +Dn+1,n+1r
T
n+1,

Bn = Dn+1,n+1(d
T
n+1rn+1 +Dn+1,n+1Rn+1,n+1),

Cn = DT
nDnrn+1 + dn+1d

T
n+1rn+1 + dn+1Dn+1,n+1Rn+1,n+1.

Here we claim that An = 0T , Bn = 1, and Cn = 0 so that along with the induction
hypothesis, we have

DT
n+1Dn+1Rn+1 = In+1.

(a) Proof of An = 0T : note that if n and j are of the same parity, then (dTn+1Rn)j =
(rn+1)j = 0, so we have that the jth element of An is 0. If n and j are of different
parities,

(dTn+1Rn)j =
n∑

i=1,(i+j)even

√
n!2

j−1
2 (i+ j − 3)!!(−1)i+

i+j
2

θ
j−1
2

1 (i− 1)!(n+ 1− i)!!
,

−(Dn+1,n+1rn+1)j = −2
j−1
2 (−1)n+1+n+1+j

2 (n+ j − 2)!!

θ
j−1
2

1

√
n!

.

(i) If n odd, j even, and j < n, applying Lemma A.8 and making the change of
variable l = i

2 − 1 gives

(dTn+1Rn)j = (2/θ1)
j−1
2 (−1)

j
2

√
n!

×

n−1
2
−1∑

l=0

(−1)l+1 (2l + 1)!!

(2l + 1)!(n− 1− 2l)!!

j−2
2∏

m=1

(2l + 2m+ 1)

= −(2/θ1)
j−1
2 (−1)

j
2

√
n!

2
n−1
2 (n−12 )!

n−1
2
−1∑

l=0

(−1)l
(n−1

2

l

) j−2
2∏

m=1

(2l + 2m+ 1)

= −(2/θ1)
j−1
2 (−1)

j
2

√
n!

2
n−1
2 (n−12 )!

×

n−1
2∑
l=0

(−1)l
(n−1

2

l

) j−2
2∏

m=1

(2l + 2m+ 1)− (−1)
n−1
2

j−2
2∏

m=1

(n+ 2m)


= −(2/θ1)

j−1
2 (−1)

j
2

√
n!

2
n−1
2 (n−12 )!

0 + (−1)
n+1
2

j−2
2∏

m=1

(n+ 2m)


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= (2/θ1)
j−1
2 (−1)

n+j−1
2

√
n!

(n− 1)!!

j−2
2∏

m=1

(n+ 2m)

= (2/θ1)
j−1
2 (−1)

n+j−1
2

(n+ j − 2)!!√
n!

= −(Dn+1,n+1rn+1)j .

(ii) If n even, j odd, and j < n, similarly, applying the change of variable l = i−1
2

gives

(dTn+1Rn)j = −
√
−1

(2/θ1)
j−1
2 (−1)

j
2

√
n!

2
n
2 (n2 )!

n
2
−1∑
l=0

(−1)l
(n

2

l

) j−1
2∏

m=1

(2l + 2m− 1)

=
√
−1

(2/θ1)
j−1
2 (−1)

j
2

√
n!

2
n
2 (n2 )!

(−1)
n
2

j−1
2∏

m=1

(n+ 2m− 1)

=
(−1)

n+j+1
2 (2/θ1)

j−1
2 (n+ j − 2)!!√

n!
= −(Dn+1,n+1rn+1)j .

(b) Proof of Bn = 1: (3.1) gives

rTn+1dn+1 =
n∑

i=1,(n+i)odd

(2/θ1)
n
2

√
n!

(−1)n+1+n+1+i
2 (n+ i− 2)!!

(i− 1)!(n+ 1− i)!!
.

(i) If n odd, applying the change of variable l = i
2 − 1 and using Lemma A.8,

rTn+1dn+1

= (2/θ1)
n
2

√
n!

n∑
i=1,(i)even

(−1)
n+1+i

2 (i− 1)!!
∏n−1

2
m=1(i+ 2m− 1)

(i− 1)!(n+ 1− i)!!

= (2/θ1)
n
2

√
n!(−1)

n−1
2

n−1
2
−1∑

l=0

(−1)l(2l + 1)!!

(2l + 1)!(n− 1− 2l)!!

n−1
2∏

m=1

(2l + 2m+ 1)

=
(2/θ1)

n
2

√
n!(−1)

n−1
2

2
n−1
2 (n−12 )!

n−1
2
−1∑

l=0

(−1)l
(n−1

2

l

) n−1
2∏

m=1

(2l + 2m+ 1)

=
(2/θ1)

n
2

√
n!(−1)

n−1
2

2
n−1
2 (n−12 )!

×

n−1
2∑
l=0

(−1)l
(n−1

2

l

) n−1
2∏

m=1

(2l + 2m+ 1)− (−1)
n−1
2

n−1
2∏

m=1

(n+ 2m)


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=
(2/θ1)

n
2

√
n!(−1)

n−1
2

2
n−1
2 (n−12 )!

n−1
2∑
l=0

(−1)l
(n−1

2

l

)
(2l)

n−1
2 − (−1)

n−1
2

n−1
2∏

m=1

(n+ 2m)


=

(2/θ1)
n
2

√
n!(−1)

n−1
2

2
n−1
2 (n−12 )!

(−2)
n−1
2

(
n− 1

2

)
!− (−1)

n−1
2

n−1
2∏

m=1

(n+ 2m)


= (2/θ1)

n
2

√
n!− (2θ2)

n
2

√
n!

(2n− 1)!!

=
1

Dn+1,n+1
−Dn+1,n+1Rn+1,n+1.

(ii) If n even, similarly, applying the change of variable l = i−1
2 gives

rTn+1dn+1 =
(2/θ1)

n
2

√
n!(−1)

n
2

2
n
2 (n2 )!

n
2
−1∑
l=0

(−1)l
(n

2

l

) n
2∏

m=1

(2l + 2m− 1)

=
(2/θ1)

n
2

√
n!(−1)

n
2

2
n
2 (n2 )!

(−2)
n
2 (
n

2
)!− (−1)

n
2

n
2∏

m=1

(n+ 2m− 1)


= (2/θ1)

n
2

√
n!− (2/θ1)

n
2

√
n!

(2n− 1)!!

=
1

Dn+1,n+1
−Dn+1,n+1Rn+1,n+1.

(c) Proof of Cn = 0:

RTnCn = rn+1 +RTndn+1(d
T
n+1rn+1 +Dn+1,n+1Rn+1,n+1)

= rn+1 +RTndn+1
Bn

Dn+1,n+1

=
1

Dn+1,n+1
(Dn+1,n+1rn+1 +RTndn+1)

=
1

Dn+1,n+1
ATn

= 0.

Since Rn is nonsingular, Cn = 0.

A.8. Proof of a statement in section 3. We state and prove the following proposition.

Proposition A.9. If {Rn} is a sequence of nested positive definite matrices and we let R−1n =
DT
nDn be the reverse Cholesky decomposition of R−1n , then {Dn} is nested.

Proof. Letting Rn = CnC
T
n be the Cholesky decomposition of Rn, then Dn = C−1n since

R−1n = DT
nDn and Dn is lower triangular as required. Since {Rn} is nested, by construction

of the Cholesky decompostion, Cn is a nested sequence of lower triangular matrices. By
inspection of the relationship DnCn = In when both Dn and Cn are lower triangular, it is
apparent that {Dn} is a nested sequence of matrices.
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A.9. Proof of Theorem 3.3. Consider k ≥ i and k + i is even (so that k − i is also even
and dki 6= 0). By Stirling’s approximation, as k →∞,

d2ki =
(k − 1)!

(2/θ1)i−1 ((i− 1)!)2 ((k − i)!!)2

=
(k − 1)!

(2/θ1)i−1 ((i− 1)!)2 2k−i
(
k−i
2 !
)2

∼ θi−11

((i− 1)!)2 2k−1

√
2π(k − 1)(k−1e )k−1

π(k − i)(k−i2e )k−i

∼ θi−11

((i− 1)!)2 2k−1

√
2

π

1√
k

2k−ie1−i(k − 1)i−1
(

1 +
i− 1

k − i

)k−i
∼
√

2

π

ki−
3
2 θi−11

2i−1 ((i− 1)!)2
.

Since f(x) = xp, the nth order derivatives when x = 0 are all 0 except for n = p, when it is
p!. As n→∞,

θ̂0 =
1

n
‖D(θ1, n)z‖2

=
(p!)2

n

n∑
k=1

d2k,p+1

=
(p!)2

n

bn−p2 c∑
k=0

d2p+1+2k,p+1

∼ (p!)2

n

bn−p2 c∑
k=0

√
2

π

(p+ 1 + 2k)p−
1
2 θp1

2p(p!)2

∼
√

2

π

2p−
1
2 θp1

2p
(bn−p2 c)

p+ 1
2

n(p+ 1
2)

∼ np−
1
2 θp1√

2π2p(p+ 1
2)
,

where the first asymptotic equivalence follows from Lemma A.2.

A.10. Proof of a statement in section 4. We state and prove the following proposition.

Proposition A.10. For some m > 1, consider a (2m− 1)× (2m− 1) regular grid on [0, 1]×
[0, 1]. Observations z are taken on the m ×m regular subgrid. When m = 12, the setup is
shown in Figure 3. Denote pi,j as the predictand at location (i, j) for some j odd, and p̂i,j as
the EBLP defined in (4.7), then

p̂i,j = vTj (θ̂2)z(j−1)m+1:jm,
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where vTj (θ̂2) = rj(θ̂2)R
−1(θ̂2,m) for some rj(θ̂2) ∈ R1×m depending only on θ̂2. That is, p̂i,j

only depends on observations on the jth column of the grid, and the range parameter estimate
along columns.

Proof. Note that the covariance of pi,j and the observations z is

Cov
(
pi,j , z

T
)

= θ̂0R(θ̂1,m)j,. ⊗ rj(θ̂2),

where R(θ̂1,m)j,. is the jth row of R(θ̂1,m) and rj(θ̂2) is the correlation of pi,j and observations
on the jth column. Then we have

p̂i,j = Cov
(
pi,j , z

T
)

Cov
(
z, zT

)−1
z

=
(
R(θ̂1,m)j,. ⊗ rj(θ̂2)

)(
R−1(θ̂1,m)⊗R−1(θ̂2,m)

)
z

=
(
R(θ̂1,m)j,.R

−1(θ̂1,m)
)
⊗
(
rj(θ̂2)R

−1(θ̂2,m)
)
z

=
(
eTj ⊗ rj(θ̂2)R−1(θ̂2,m)

)
z

= vTj (θ̂2)z(j−1)m+1:jm,

where ej is the jth standard base and vTj (θ̂2) = rj(θ̂2)R
−1(θ̂2,m).
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